From Immersive Visualization Lab Wiki
Jump to: navigation, search


CSE 190: Virtual Reality Technology

Course Description

Virtual reality (VR) has been capturing people's imagination for decades, but it has been only recently that this technology became available for consumers. This course aims to explain how VR technology works, and you are going to do programming projects to better understand potential and limitations of today's VR hardware and devices.

Due to COVID-19 this course will be taught entirely on-line. This means that we are not going to use the Oculus Rift headsets in the CSE VR lab, and all lectures, discussions and tutoring will happen via Zoom.

Computer Hardware Requirements

In order to be able to do the homework projects in this course you will need to have:

  • A Windows or Apple computer (desktop or laptop) with the ability to run Unity
  • A smartphone Unity can build for (Android or iOS)
  • A Google Cardboard-compatible VR viewer your smartphone will fit in (e.g., Merge VR). These are between $10 and $50, available from Amazon, Ebay, etc. Any other VR headset Unity supports will also work (e.g., Oculus Rift, HTC Vive, Microsoft Mixed Reality, etc.)
  • A USB cable to connect your computer to your smartphone

Course Schedule

Click here for the course schedule.

It lists lecture dates, homework due dates, and recommended reading.


In this course the following topics are going to be covered, plus a few more:

  1. Overview of the state-of-the-art VR technologies and research trends
  2. VR programming in Unity
  3. Human visual system: 3D depth cues, color perception
  4. Fundamental physics of 3D displays
  5. Display types: LCD, OLED, volumetric, light field
  6. How to generate stereographic 3D images
  7. Immersive VR systems: HMD, CAVE, smart phone VR, etc.
  8. Augmented reality devices
  9. Rendering to HMDs


  • CSE167 (Introduction to Computer Graphics) or equivalent


  • Instructor: Dr. Jürgen Schulze
  • Instructor's office hour: Thursdays 3:30-4:30pm, Atkinson Hall, Room 2125
  • TA: Andrew Huang, for lab hours see Piazza
  • Number of Units: 4
  • Section ID: 6402
  • Lectures: Tuesday and Thursday, 2:00pm-3:20pm live on Zoom
  • Homework Discussion: Mondays 1pm on Zoom
  • 3 programming assignments
  • Written final exam
  • VR app presentation: slides and video
  • Discussion board: Piazza
  • Online chat and resources: Discord
  • Grade management: Canvas


Projects 1-3 20% each
Final Exam (written) 30%
VR App Presentation 10%

We will enter your grades into Canvas. Please verify sporadically that your grades have been recorded correctly and inform your grader or instructor if you find an error.

The final grade depends on the weighted average of all your scores. The following grading key will be used:

Final Score Letter Grade
100+ A+
95+ A
90+ A-
85+ B+
80+ B
75+ B-
70+ C+
65+ C
60+ C-

For undergraduate students with the P/NP option: A pass (P) grade will be given for an average grade of 60 or higher.

For graduate students with the S/U option: A satisfactory (S) grade will be given for an average grade of 75 or higher.

Homework Assignments

All homework projects are due on Fridays, there will be a due date roughly every other week.

All projects are solo projects. Team work is not permitted.

To submit your project, make a video of your app showcasing all its features and upload to Canvas by the due date.

If you cannot get a project done in time before the due date you can submit it by the following Sunday at a penalty of 25% of your grade.

Internet Resources

UCSD's VR Club TritonXR has some excellent resources to help you get started creating VR applications with Unity.

  • Workshop Slides: Take a look at the "Technical" folder for Unity-specific workshops. If you're interested, there are also non-technical design slides that are interesting for VR.
  • Unity Tutorial Guide This guide helps you navigate Unity's many offered tutorials.

EdX course 190x teaches VR with Unity on smartphones with lots of videos and hands-on tutorials. You can audit it free of charge.

Or you can view just the tutorial videos which walk you through the steps to create a VR app for your smartphone.


You will not need to buy a textbook for this course because the lecture slides will be made available to you, and the material from the lectures will be sufficient for the final exam. However, if you want more in-depth information, we recommend the following books:

Vrbook-200p.jpg The VR Book by Jason Jerald, 550 pages, Morgan & Claypool Publishers, October 16, 2015, ISBN-10: 1970001127, ISBN-13: 978-1970001129
Vr-200p.jpg Virtual Reality by Steven M. LaValle. To be published by Cambridge University Press. Download PDF

Students with Disabilities

If you have a documented disability, please email me your documentation to me as soon as possible so that I can make suitable accommodations for you. If you believe that you have a disability and desire accommodation, please register with the Office for Students with Disabilities.