From Immersive Visualization Lab Wiki
Revision as of 15:26, 23 March 2020 by Jschulze (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


CSE 190: Virtual Reality Technology

Course Description

Virtual reality (VR) has been capturing people's imagination for decades, but it has been only recently that this technology became available for consumers. This course aims to explain how VR technology works, and you are going to do programming projects to better understand potential and limitations of today's VR hardware and devices.

COVID-19 Update: This quarter this course will be taught entirely on-line. This means that we are not going to be able to use the Oculus Rift headsets in the CSE VR lab, and lectures, discussions and tutoring will happen via Zoom.

Course Schedule

Click here for the course schedule.

It lists lecture dates, homework due dates, and recommended reading.


In this course the following topics are going to be covered, plus a few more:

  1. Overview of the state-of-the-art VR technologies and research trends
  2. VR programming in Unity
  3. Human visual system: 3D depth cues, color perception
  4. Fundamental physics of 3D displays
  5. Display types: LCD, OLED, volumetric, light field
  6. How to generate stereographic 3D images
  7. Immersive VR systems: HMD, CAVE, smart phone VR, etc.
  8. Augmented reality devices
  9. Rendering to HMDs


  • CSE167 (Introduction to Computer Graphics) or equivalent


  • Instructor: Dr. Jürgen Schulze
  • Instructor's office hour: Thursdays 3:30-4:30pm, Atkinson Hall, Room 2125
  • Number of Units: 4
  • Section ID:
  • Lectures: Tuesday and Thursday, 2:00pm-3:20pm
  • Homework Discussion: Mondays
  • 4 programming assignments
  • 1 Written final exam
  • 1 VR app presentation: slides and video
  • Discussion board: Canvas
  • TA: Andrew Huang


Projects 1-4 15% each
Final Exam (written) 30%
VR Content Presentation 10%

You will find your grades on Canvas. Please verify sporadically that your grades have been recorded correctly and inform your grader or instructor if you find an error.

For undergraduate students with the P/NP option: A pass (P) grade will be given for an average grade of 60 or higher.

For graduate students with the S/U option: A satisfactory (S) grade will be given for an average grade of 75 or higher.

Homework Assignments

All homework projects are due on Fridays, there will be a due date roughly every other week.


All projects are solo projects. Team work is not permitted.

If you cannot get a project done in time before the due date you can submit it on the following Friday at a penalty of 25% of your grade.

Optional Textbooks

You will not need to buy a textbook for this course because the lecture slides will be made available to you. However, if you want more background information, we recommend the following books:

Vrbook-200p.jpg The VR Book by Jason Jerald, 550 pages, Morgan & Claypool Publishers, October 16, 2015, ISBN-10: 1970001127, ISBN-13: 978-1970001129
Vr-200p.jpg Virtual Reality by Steven M. LaValle. To be published by Cambridge University Press. Download PDF

Students with Disabilities

If you have a documented disability, please email me your documentation to me as soon as possible so that I can make suitable accommodations for you. If you believe that you have a disability and desire accommodation, please register with the Office for Students with Disabilities.