Project3F17

From Immersive Visualization Lab Wiki
Revision as of 21:02, 31 October 2017 by Hvt001 (Talk | contribs)

Jump to: navigation, search

Contents

Project 3: Robot Army

In this project you will need to implement a scene graph to render an army of Android-inspired robots.

The total score for this project is 100 points. Additionally, you can obtain up to 10 points of extra credit.

1. Sky Box (25 Points)

Start with code that uses your trackball code, and modify it to control the camera instead. (If you didn't get that to work, keyboard controls will suffice.)

Create a sky box for your scene with the robots. A sky box is a large, square box which is drawn around your entire scene. The inside walls of the box have pictures of a sky and a horizon. Sky boxes are typically cubic, which means that they consist of six square textures for the six sides of a cube. Here is a great tutorial for sky boxes in modern OpenGL.

Here is is a nice collection of textures for sky boxes, and here is an even bigger one.

Draw a cubic sky box and make it extremely big. For instance, by giving it coordinates like -1000 and +1000.

Make sure single-sided rendering (triangle culling) is enabled with these lines somewhere in your code to ensure that you will never see the outside of the box (this assumes that your sky box is defined with the triangles facing inward):

glEnable(GL_CULL_FACE); 
glCullFace(GL_BACK); 

Use the following settings for your texture after your first glBindTexture(GL_TEXTURE_CUBE_MAP, id) for correct lighting and filtering settings:

  // Make sure no bytes are padded:
  glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // Deprecated in modern OpenGL - do not use!

  // Select GL_MODULATE to mix texture with polygon color for shading:
  glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); // Deprecated in modern OpenGL - do not use!

  // Use bilinear interpolation:
  glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
  glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

  // Use clamp to edge to hide skybox edges:
  glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

To familiarize yourself with texture mapping in OpenGL, we provide sample code, which loads a PPM file and uses it as a texture for a quad. If you decide to use one of the above referenced sky box images, you will have to convert them from JPEG to PPM format. The free image processing tool IrfanView for Windows will do this for you. Alternatively, you can use a third party library such as SOIL to natively load JPEG images.

Grading:

  • 5 points for functional camera controls with keyboard or mouse
  • 5 points for the sky box without textures
  • 5 points for the textures
  • 5 points for correct rendering of edges and corners (seamless edges)
  • 5 points for correct culling of the skybox

2. Scene Graph Engine (20 Points)

To connect the parts of the robot (head, torso, limbs, eyes, antennae), we need to first implement a simple scene graph structure for our rendering engine. This scene graph should consist of at least three nodes: Node, Transform and Geometry. You are free to add more scene graph node types as you see fit.

  • Class Node should be abstract and serve as the common base class. It should implement the following class methods:
    • an abstract draw method: virtual void draw(Matrix4 C)=0
    • an abstract virtual void update()=0 method to separate bounding sphere updates from rendering (4 points)
  • Transform should be derived from Node and have the following features: (8 points)
    • store a 4x4 transformation matrix M
    • store a list of pointers to child nodes (std::list<Node*>)
    • provide class methods to add and remove child nodes (addChild(), removeChild()) from the list
    • its draw method needs to traverse the list of children and call each child node's draw function
    • when draw(C) is called, multiply matrix M with matrix C.
  • Geometry should be derived from Node and have the following features: (8 points)
    • set the modelview matrix to the current C matrix
    • an initialization method to load a 3D model (OBJ file) whose filename is passed to it (init(string filename). Your OBJ loader from project 2 should work.
    • have a class method which draws the 3D model associated with this node.

3. Walking Android Robot (25 Points)

Now that we have the scene graph classes, it is time to put them to work, and build a robot with them.

Thanks to our tutor Yining Liang, who created these parts for his own CSE 167 homework project, you have the following robot parts to choose from: head, body, limb, eye, antenna. You will find the OBJ files in this ZIP file.

Build your own robot using the addChild methods. Use at least 3 different types of parts for your robot (e.g., body, head and limb). In total, your robot needs to consist of at least 4 parts, 3 of which need to be moving independently from one another and they need to be connected to the 4th part. (15 points)

This is an example of a valid robot with two antennas, two eyeballs, one head, one torso and 4 limbs (2 legs and 2 arms):

Robot.png

Use your creativity to build the most creative robot in class! The 5 most creative robots in class, after a vote on Piazza, are going to get extra credit.

Once you've created your scene graph, you need to get your rendering engine ready to recursively traverse the scene graph for rendering by creating a root node of type Group and calling its draw() function with the identity matrix as its parameter.

Animate the robot to make it look like it is walking, by changing the matrices in the Transform nodes. (10 points)

4. Robot Army (15 Points)

Test your implementation by constructing a scene which consists of a large amount of robots, at least 100. The robots can all be identical clones.

  • Distribute the robots on a 2D grid (i.e., place them on a plane with uniform spacing). For 100 robots, use a 10x10 grid. (10 points)
  • Enable the animation for all the robots so that they look like they are walking. (3 points)
  • Enable your rotation and scale routines (keyboard or mouse) to allow rotating the grid of 3D objects and zoom in or out. (2 points)

This image illustrates the grid layout of the robots:

Robot-army.png


5. Culling (15 Points)

Implement object level culling, to allow the existence of thousands of instances of your robot, without having to render them all at once.

Calculate a bounding sphere (Vector3 for its center point, and a radius) for each of your robots, which contains all parts of the robot. Allow the display of the bounding spheres by rendering them as wireframe spheres. Enable a keyboard key to toggle the bounding spheres on and off. (3 points)

Note: You do not need to find the tightest possible bounding spheres - that can be rather difficult. Just make them as tight as you reasonably can.

Add view frustum culling using the bounding spheres of the objects. If the bounding sphere of an object is completely outside of the view frustum, the object should be culled (not rendered). Your culling algorithm should make use of a utility function to test whether a bounding sphere intersects with a given plane (the planes of the view frustum), or whether the sphere is entirely on one side of the plane. Enable a keyboard key to turn culling on and off. (10 points)

Increase the amount of robots by orders of magnitude, by creating a larger array of them. A good portion of the array should be off screen for the culling to be effective. Display the rendering time per frame in your text window, and show that by turning culling on your rendering time decreases. (2 points)

6. Extra Credit (10 Points)

TBD