
CSE 167:

Introduction to Computer Graphics

Lecture #10: Scene Graph

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2020

Announcements

2

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

3

Graphics System Architecture

Interactive Applications

� Video games, scientific visualization, CAD modeling

Rendering Engine, Scene Graph API

� Implement functionality commonly required in applications

� Back-ends for different low-level APIs

� No broadly accepted standards

� OpenSceneGraph, Nvidia SceniX, Torque3D, Ogre3D

Low-level graphics API

� Interface to graphics hardware

� Highly standardized: OpenGL, Direct3D, Vulkan

4

Commonly Offered Functionality

� High-level scene representation

� Graph data structure

� Resource management

� File loaders for geometry, textures, materials, animation
sequences

� Memory management

� CPU <-> GPU memory

� HDD <-> CPU memory

� Rendering

� Optimized for efficiency (e.g., minimize OpenGL state changes)

5

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

6

Scene Graphs

� Data structure for intuitive construction of 3D scenes

� So far, our GLFW-based projects store a linear list of
objects

� Does not scale to large numbers of objects in complex
dynamic scenes

7

Example: Scene Graph for Solar System

8

MMars2World

MDeimos2Mars

Sun

Mars

Phobos Deimos

MPhobos2Mars

World

MEarth2World

Earth

Moon

MMoon2Earth

Data Structure

� Requirements

� Collection of separable geometry models

� Organized in groups

� Related via hierarchical transformations

� Use a tree structure

� Nodes have associated local coordinates

� Different types of nodes

� Geometry

� Transformations

� Lights

� Many more

9

Class Hierarchy

� Many designs possible

� Design driven by intended application
� Games

� Optimized for speed

� Large-scale visualization
� Optimized for memory requirements

� Modeling system
� Optimized for editing flexibility

10

Sample Class Hierarchy

11

Node

GeometryTransform

3DModelTrackball Sphere Billboard

Class Hierarchy

Node

� Common base class for all node types

� Stores node name, pointer to parent, bounding box

Geometry

� sets the modelview matrix to the current C matrix

� has a class method which draws its associated geometry

Transform

� Stores list of children

� Stores 4x4 matrix for affine transformation

12

Transform

Geometry

Class Hierarchy

Sphere

� Derived from Geometry node

� Pre-defined geometry with
parameters, e.g., for tesselation
level (number of triangles),
solid/wireframe, etc.

Billboard

� Special geometry node to display
an image always facing the viewer

13

Class Hierarchy

3DModel

� Takes file name to load 3D model
file

Trackball

� Creates the matrix transformation
based on a virtual trackball
controlled with the mouse

14

Scene Graph for Solar System

15

MMars2World

MDeimos2Mars

Sun

Mars

Phobos Deimos

MPhobos2Mars

World

MEarth2World

Earth

Moon

MMoon2Earth

Building the Solar System

16

// create sun:

world = new Transform();

world.addChild(new Model(“Sun.obj”));

// create planets:

earth2world = new Transform(…);

mars2world = new Transform(…);

earth2world.addChild(new Model(“Earth.obj”));

mars2world.addChild(new Model(“Mars.obj”));

world.addChild(earth2world);

world.addChild(mars2world);

// create moons:

moon2earth = new Transform(…);

phobos2mars = new Transform(…);

deimos2mars = new Transform(…);

moon2earth.addChild(new Model(“Moon.obj”));

phobos2mars.addChild(new Model(“Phobos.obj”));

deimos2mars.addChild(new Model(“Deimos.obj”));

earth2world.addChild(moon2earth);

mars2world.addChild(phobos2mars);

mars2world.addChild(deimos2mars);

Transformation Calculations

� moon2world = moon2earth * earth2world;

� phobos2world = phobos2mars * mars2world;

� deimos2world = deimos2mars * mars2world;

17

Scene Rendering

Transform::draw(Matrix4 M)

{

M_new = M * MT; // MT is a class member

for all children

draw(M_new);

}

Geometry::draw(Matrix4 M)

{

setModelMatrix(M);

render(myObject);

}

� Recursive draw calls

Initiate rendering with
world->draw(IDENTITY);

18

Ideas for Scene Graph Nodes

� Change tree structure

� Add, delete, rearrange nodes

� Change node parameters

� Transformation matrices

� Shape of geometry data

� Materials

� Create new node subclasses

� Animation, triggered by timer events

� Dynamic drone-style camera

� Light source

� Provide complex functionality as nodes

� Video node

� Elevator node

� Terrain rendering node

19

