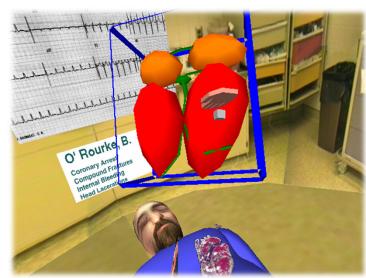
CSE 165: 3D User Interaction

Lecture #16: 3D UI Design Jürgen Schulze

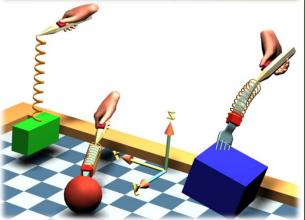
Announcements

- Homework assignment #4 due
 Thursday, March 20th at 3pm in lab 260
- TA evaluation:
 - between Monday, March 3 at 12:00 AM and Monday, March 17 at 11:59 PM


CAPE

- Submit CAPE forms on-line in weeks 9+10
- Responses to all surveys are completely anonymous.
- Only a summary of results is provided to the CS department and the instructor.
- This summary is provided AFTER final grades have been posted.
- A minimum number of three evaluations must be submitted by students for summaries to made available.


3D UI Design Strategies


Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

Highlighting object about to be selected



Spring Manipulation Tools, Michal Koutek, TU Delft

Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
 - User both sees and feels
- Advantages
 - Inexpensive haptic/tactile feedback
 - Establish perceptual frame of reference
- Disadvantages
 - Scalability
 - Performance improvements have not yet been measured

Designing for Humans – Constraints

- Constraints:
 - Are a relation between variables that must be satisfied
 - Example: a line should stay horizontal
 - Define geometrical coherence of scene
 - Can make interaction simpler and improve accuracy

Designing for Humans – Constraint Types

- Physically realistic constraints
 - Collision detection and avoidance
 - Gravity
 - Application dependent
- DOF reduction
 - Simplify interaction (example: constrain travel to ground)
- Dynamic alignment tools
 - Grids and snapping, guiding surfaces
- Intelligent constraints
 - Deal with semantics
 - Example: lamp can only stand on horizontal surfaces

Designing for Humans – Two Handed Control

- Also known as bimanual input
- Transfer everyday manipulation experiences to 3DUI
- Can increase user performance on certain tasks
- Active topic of research

Designing for Humans – Guiard's Framework

- Tasks are
 - Unimanual: throwing darts
 - Bimanual symmetric
 - Synchronous: pulling a rope
 - Asynchronous: typing on keyboard
 - Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other
- Division of labor (hand roles) for asymmetric scenario:
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements, nondominant hand performs gross manipulation
 - Manipulation is initiated by nondominant hand

Designing for Different User Groups

- Age
- Prior 3DUI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
 - Color recognition
 - Stereo vision
 - Spatial abilities

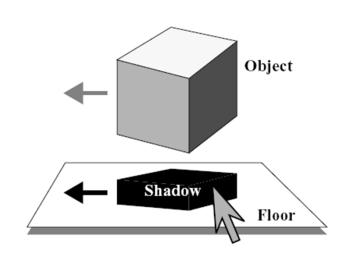
Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue

3DUI Design Strategies

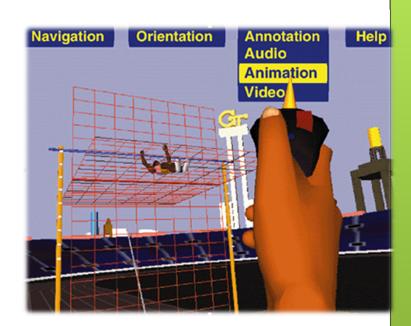
- Designing for humans
 - Match design to human strengths
- Inventing 3D interaction techniques
 - Creative exploration of 3D Uls

Inventing 3D User Interfaces


- Realism (or isomorphism)
 - Borrowing from real world
- Magic (or non-isomorphism)
 - Deviating from the real world and introducing artificial, magic techniques
- Continuum between realism and magic

Inventing 3DUIs – Simulating Reality

- Tried and true approach
 - replicate world as close as possible
 - bring in certain elements
- Important for simulation applications
 - flight simulators
 - medical training
 - phobia treatment
- Dependent on application
- Advantages
 - User already knows how to do it from everyday experience
 - Can be implemented on the basis of designer intuition
- Disadvantages
 - Limitations of technology do not allow exact realism
 - Introduces limitations of the physical world into the virtual world


Inventing 3DUIs – Adopting from the Real World

- Adopt artifacts, ideas, philosophies, domains
- Architecture and movies
- Real-world metaphors
- Examples
 - o virtual vehicle
 - flashlight
 - shadows

Inventing 3DUIs – Adapting from 2D

- 2D UIs studied extensively
- Most people fluent with 2D interaction
- Can be easier than 3D
- Approaches
 - 2D overlay
 - Elements in 3D environment
 - 2D interaction with 3D objects
 - Ul on separate device, e.g., lpad

Inventing 3DUIs – Magic and Aesthetics

- Real power of 3DUIs
 - better reality
 - alternate reality
- Overcome human limitations
- Reduces effects of technological limitations

http://www.cantonmagicrafters.com/images/rabbit.jpg

Magic: Cultural Clichés & Metaphors

- Examples: Flying carpet, Go-Go, WIM
- Advantages:
 - easy to understand if you know the metaphor
 - usually they are very enjoyable
 - o many metaphors are available
 - need not to be learned

• Disadvantages:

- the metaphors can be misleading
- the metaphors are often rooted in culture
- o it is difficult to come up with good magic metaphor

3D UI Evaluation

Why User Evaluation?

- Need to compare
 - devices
 - interaction techniques
 - Applications
- Problem identification and redesign
- General usability understanding

Some Terminology

- Usability everything about an artifact and what affects a person's use of an artifact
- Evaluator person who designs, administers, implements, or analyzes an evaluation
- Subject person who takes part in the evaluation

Evaluation Tools

- User task analysis
 - generates list of detailed task descriptions, sequences, user work, and information flow
- Scenarios
 - built from task analysis
 - important for experiment design
- Taxonomy
 - science of classification
 - break down techniques into components
 - used in evaluation process
- Prototyping
 - need to have something to test
 - paper-based sketches
 - Wizard of Oz approach

Evaluation Methods

- Cognitive walkthrough
- Heuristic evaluation
- Formative evaluation
 - observational user studies
 - questionnaires, interviews
- Summative evaluation
 - task-based usability evaluation
 - formal experimentation
- Questionnaires
- Interviews and Demos