CSE 167:
Introduction to Computer Graphics
Lecture #11: Bezier Curves

Juargen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Announcements

» Project 5 due Friday

» Heads Up: CSE 190
Advanced Computer Graphics

Prof. Ravi Ramamoorthi

= UCSD

Video

» Bezier Curves

’ = UCSD

Curves

» Can be generalized to surface patches

Curve Representation

» Specify many points along a curve, connect with lines?
Difficult to get precise, smooth results across magnification levels
Large storage and CPU requirements
How many points are enough!?

» Specify a curve using a small number of “control points”
Known as a spline curve or just spline

o |50.120)

Spline: Definition
» Wikipedia:

Term comes from flexible spline

devices used by shipbuilders and
draftsmen to draw smooth shapes.

Spline consists of a long strip fixed
in position at a number of points
that relaxes to form a smooth curve
passing through those points.

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction

Drawing Bézier curves

Piecewise Bézier curves

= UCSD

Interpolating Control Points

» “Interpolating” means that curve goes through all control
points

» Seems most intuitive

» Surprisingly, not usually the best choice
Hard to predict behavior
Hard to get aesthetically pleasing curves

12+,

/‘ — qlpa
|

i = UCSD

Approximating Control Points

» Curve is “influenced” by control points

7N

» Most common: polynomial functions

» Various types

Bézier spline (our focus)
B-spline (generalization of Bézier spline)
NURBS (Non Uniform Rational Basis Spline): used in CAD tools

9 = UCSD

Mathematical Definition

» A vector valued function of one variable x(7)
Given t, compute a 3D point x=(x,y,7)
Could be interpreted as three functions: x(7), y(¢?), z(¢)
Parameter t “moves a point along the curve”

3 ’X
x(0.0) x(0.5) x(1.0)

" = UCSD

Tangent Vector

» Derivative X’(t) — Ccii—)t{ — (ﬂfl(t)a y’(t), Z/(t))

» Vector x’ points in direction of movement

» Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

11

= UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

12

= UCSD

Polynomial Functions

» Linear: f(t) —at+b

(It order)

» Quadratic: f(t) = at® + bt + ¢
(2" order)

» Cubic: f(t) = at® + bt* + ct
(3 order)

13

Polynomial Curves

» Linear x(t) =at+Db
X = (3373/7 Z)aa — (afazaayaaz)ab — (baza bya bz)

.flf(t) — afﬂjt BN b:l?
» Evaluated as: y(t) = a,t + b,
Z(t) — a/zt N bz
4
b
2

" = UCSD

Polynomial Curves
» Quadratic: x(t) = at* + bt +c z
(2" order) ‘ i _)

» Cubic: x(t) =at’ +bt* +ct+d

(3 order) Jyz)@

» We usually define the curve for0 <t < |

" = UCSD

Control Points

» Polynomial coefficients a, b, ¢, d can be interpreted as
control points
Remember:a, b, ¢, d have x,y,z components each

» Unfortunately, they do not intuitively describe the shape of
the curve

» Goal: intuitive control points

° = UCSD

Control Points

» How many control points!?
Two points define a line (1 order)
Three points define a quadratic curve (2" order)
Four points define a cubic curve (3™ order)

k+1 points define a k-order curve

» Let’s start with a line...

! = UCSD

First Order Curve

» Based on linear interpolation (LERP)
Weighted average between two values
“Value” could be a number, vector, color, ...

» Interpolate between points p, and p; with parameter ¢
Defines a “curve” that is straight (first-order spline)
t=0 corresponds to p,
t=1 corresponds to p,

t=0.5 corresponds to midpoint
P1

=1

=0
x(t)= Lerp(t, po» P,)= (1—1)p, +1 p,
° =< UCSD

Linear Interpolation

» Three equivalent ways to write it
Expose different properties

I. Regroup for points p
x(t) = po(l —t) + pit

2. Regroup for ¢
x(t) = (P1 — Po)t + Po

3. Matrix form

e m 4]
" = UCSD

Weighted Average

x()=1-t)p,+ (©)p,
= B,(t) p, + B,(t)p,, where B,(t)=1—t and B,(t)=t

» Weights are a function of ¢

20

Sum is always |, for any value of ¢

Also known as blending functions

0.5 -
~B,() Bi)-
0.6} 7
o.af o~
-
.-"'F’.
0.z} o
-_____.i"
--.-J-'-‘-
0.2 0.4 0.6 0.3 i—

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

21

= UCSD

Linear Polynomial

X()=(P,—Py) I+ Py
Nt B

%/._/
vector point
a b

» Curve is based at point p,,
» Add the vector, scaled by ¢

PP

Po —
T .5(py-py)

~ = UCSD

Matrix Form

<o =[pom]| ||} —cB

» Geometry matrix G = | Po Pi }

L -1 1
» Geometric basis B =

1 0
» Pol ' '
olynomial basis T { t }
1
» In components Doz Dle 11T
o= Rl
| Poz D1z |

N = UCSD

Matrix Form

<o =[pom]| ||} —cB

» Geometry matrix G = | Po Pi }

L -1 1
» Geometric basis B =

1 0
» Pol ' '
olynomial basis T { t }
1
» In components Doz Dle 11T
o= Rl
| Poz D1z |

N = UCSD

Tangent

» For a straight line, the tangent is constant
/
X (t) = p1 — Po

» Weighted average x'(t) = (=1)po + (+1)py

» Polynomial X,(t) = 0t + (p1 — Po)

» Matrix form X,(t) = [PO P1 } { _11 é} { (1)}

> = UCSD

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

26

= UCSD

Bézier Curves

» Are a higher order extension of linear interpolation

. P1
1N
1N
AY
! \

P1

Po

Linear Quadratic Cubic

7 = UCSD

Bézier Curves

» Give intuitive control over curve with control points

Endpoints are interpolated, intermediate points are
approximated

Convex Hull property

» Many demo applets online, for example:
Demo:

” = UCSD

Cubic Beézier Curve

» Most commonly used case

» Defined by four control points:
Two interpolated endpoints (points are on the curve)
Two points control the tangents at the endpoints

» Points X on curve defined as function of parameter ¢

Po X(1)

- P; = UCSD

Algorithmic Construction

» Algorithmic construction

30

De Casteljau algorithm, developed at Citroen in 1959,
named after its inventor Paul de Casteljau (pronounced
“Cast-all-’Joe”)

Developed independently from Beézier’s work:

Bézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm

= UCSD

De Casteljau Algorithm

» A recursive series of linear interpolations

Works for any order Bezier function, not only cubic

» Not very efficient to evaluate

Other forms more commonly used

» But:
Gives intuition about the geometry

Useful for subdivision

7 = UCSD

De Casteljau Algorithm

» Given:

Four control points
A value of 1 (here =0.25)

Po

32

P>

De Casteljau Algorithm

a
q,(1)= Lerp(t,po:P1) py”

q,(t)= Lerp(t,p,,p,)
q,(t)= Lerp(t,p,,p;)

> = UCSD

De Casteljau Algorithm

r, (1) = Lerp (t,4,(1),q,(1))
r,(1) = Lerp (t,q, (1), q, (1))

34

De Casteljau Algorithm

—————

x(t) = Lerp(t,x,(t),r,(t))

” = UCSD

De Casteljau Algorithm

» Applets

Demo:

36

~
~
~
~
~
~
~
~

~

~
?
’
’
’
’

Recursive Linear Interpolation

P
qO:Lerp(tapO’pl) :

rO:Lerp(fa(Io’ql)q —Lerp(t PP)
= M1 M)

=L [T,
X el”p(Iy rl)l'l — Lerp(t,qp‘h)

P
q2 = Lerp(t,pzaPS) ’
P
/pl
/QO\
/ro\ /pz
X \ /‘h\
rl\ P3
(h/
\p4

37

= UCSD

Expand the LERPs

q,(t) = Lerp(t,py»p,)= (1—1)p, +1p,
q,(t)= Lerp(t,p,.p,)=(1—1)p, +p,
q,(t)= Lerp(t,p,.p;)=(1—1)p, +p,

r,(t)= Lerp(t,q,(1).q,())=(1-1)((1-t)p, +tp,)+t ((1-1)p, +1p,)
r,(t)= Lerp(t,q,(t),q,(®))=(1—t)(1-t)p, +tp,)+t (1 - 1)p, + tp;)

x(t)= Lerp(t,r,(t),1,(1))
=(1-0)(-)((-1)p, +p,)+ 1((1—1)p, +1p,))
+t((-2)((1=1)p, +1p,)+ 1((1-1)p, +1p,))
% =< UCSD

Weighted Average of Control Points

» Regroup for p:
x(t)=(1-t)((1-1)(1-1)p, +p,)+ 1((1—1)p, +1p,))

+ (1=1)((1=1)p, + 1,)+1((1-1)p, +m,))

x®)=(0-1)p, +30—-1) 1, +3(1-1)*p, +1°p,

BOJEt) BljSt)

x(1) = (—t3 +317 =3t + 1)p0 + (3t3 — 61 + 3t>p1

+(=363 + 3¢)p, + (7)p,

Bzv(t) B; (1)

: < UCSD

Cubic Bernstein Polynomials

x(t)= B, (1)p, + B,(¢)p, + B, (t)p, + B, (1)p;

The cubic Bernstein polynomials :
B, (t)=—t>+3t"-3t+1
B, (t)=3t> -6t +3t
B,(t)=-3t+3¢t
B,(t)=t"

Y B()=1

.61

0.2

0.81

0.4

Bernstein Cubic Polynomials

» Weights B.(t) add up to | for any value of t

40

= UCSD

General Bernstein Polynomials

By(t)=—t+1 B (t)=t"-2t+1
B (t)=1 B’ (t)=-2t" +2t
B ()=
e |
°-4 f//; / 0.4 RN
B (¢
(=

41

B(t)=—t+3t>-3t+1
B (t)=3t" -6t + 3t
B)(t)=-3t"+3¢t

Bi(t)=t

Bernstein Cubic Polynomials

n\ n!

By o
)(l_t) (t) i) T =)
Y B'(t)=1

n! = factorial of n
(n+1)! =nlx (n+1)

= UCSD

General Bézier Curves

» nth-order Bernstein polynomials form nth-order
Beézier curves

B O=")0-0"0
x()=25 O,

* = UCSD

