CSE 167:
 Introduction to Computer Graphics Lecture \#11: Bezier Curves

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2015

Announcements

- Project 5 due Friday
- Heads Up: CSE 190
- Advanced Computer Graphics
- Prof. Ravi Ramamoorthi
- http://cseweb.ucsd.edu/~ravir/I90/2015/I90.htm|

Video

- Bezier Curves
- http://www.youtube.com/watch? v=hIDYJNEiYvU

Curves

- Can be generalized to surface patches

Curve Representation

- Specify many points along a curve, connect with lines?
- Difficult to get precise, smooth results across magnification levels
- Large storage and CPU requirements
- How many points are enough?
- Specify a curve using a small number of "control points"
- Known as a spline curve or just spline

Spline: Definition

- Wikipedia:
- Term comes from flexible spline devices used by shipbuilders and draftsmen to draw smooth shapes.
- Spline consists of a long strip fixed in position at a number of points that relaxes to form a smooth curve passing through those points.

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Interpolating Control Points

- "Interpolating" means that curve goes through all control points
- Seems most intuitive
- Surprisingly, not usually the best choice
- Hard to predict behavior
- Hard to get aesthetically pleasing curves

Approximating Control Points

- Curve is "influenced" by control points
- Various types
- Most common: polynomial functions
- Bézier spline (our focus)
- B-spline (generalization of Bézier spline)
- NURBS (Non Uniform Rational Basis Spline): used in CAD tools

Mathematical Definition

- A vector valued function of one variable $\mathbf{x}(t)$
* Given t, compute a 3D point $\mathbf{x}=(x, y, z)$
- Could be interpreted as three functions: $x(t), y(t), \mathrm{z}(t)$
- Parameter t"moves a point along the curve"

Tangent Vector

- Derivative $\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- Vector x' points in direction of movement
- Length corresponds to speed

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Polynomial Functions

- Linear:

$$
f(t)=a t+b
$$ (${ }^{\text {st }}$ order)

- Quadratic: $\quad f(t)=a t^{2}+b t+c$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad f(t)=a t^{3}+b t^{2}+c t+d$ (3rd order)

Polynomial Curves

- Linear $\mathbf{x}(t)=\mathbf{a} t+\mathbf{b}$

$$
\mathbf{x}=(x, y, z), \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

- Evaluated as:

$$
\begin{aligned}
& x(t)=a_{x} t+b_{x} \\
& y(t)=a_{y} t+b_{y} \\
& z(t)=a_{z} t+b_{z}
\end{aligned}
$$

Polynomial Curves

Quadratic: $\quad \mathbf{x}(t)=\mathbf{a} t^{2}+\mathbf{b} t+\mathbf{c}$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}$ (3 ${ }^{\text {rd }}$ order)

- We usually define the curve for $0 \leq t \leq$ I

Control Points

- Polynomial coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ can be interpreted as control points
- Remember: a, b, c, d have x, y, z components each
- Unfortunately, they do not intuitively describe the shape of the curve
- Goal: intuitive control points

Control Points

- How many control points?
- Two points define a line (${ }^{\text {st }}$ order)
- Three points define a quadratic curve ($2^{\text {nd }}$ order)
- Four points define a cubic curve (3rd order)
- $k+l$ points define a k-order curve
- Let's start with a line...

First Order Curve

- Based on linear interpolation (LERP)
- Weighted average between two values
" "Value" could be a number, vector, color, ...
- Interpolate between points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ with parameter t
- Defines a "curve" that is straight (first-order spline)
- $t=0$ corresponds to $\mathbf{p}_{\mathbf{0}}$
- $t=1$ corresponds to $\mathbf{p}_{\mathbf{1}}$
- $t=0.5$ corresponds to midpoint

Linear Interpolation

Three equivalent ways to write it

- Expose different properties

1. Regroup for points \mathbf{p}

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t
$$

2. Regroup for t

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
$$

3. Matrix form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Weighted Average

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t) \mathbf{p}_{0}+\quad(t) \mathbf{p}_{1} \\
& =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}, \text { where } B_{0}(t)=1-t \text { and } B_{1}(t)=t
\end{aligned}
$$

- Weights are a function of t
, Sum is always I, for any value of t
- Also known as blending functions

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Linear Polynomial

$$
\mathbf{x}(t)=\underbrace{\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)}_{\begin{array}{c}
\text { vector } \\
\mathbf{a}
\end{array}} t+\underbrace{\mathbf{b}}_{\text {point }} \mathbf{\mathbf { p } _ { 0 }}
$$

- Curve is based at point $\mathbf{p}_{\mathbf{0}}$
- Add the vector, scaled by t

Matrix Form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\mathbf{G B T}
$$

- Geometry matrix $\quad \mathbf{G}=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]$
- Geometric basis

$$
\mathbf{B}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

- Polynomial basis

$$
T=\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

- In components

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
p_{0 x} & p_{1 x} \\
p_{0 y} & p_{1 y} \\
p_{0 z} & p_{1 z}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Matrix Form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\mathbf{G B T}
$$

- Geometry matrix $\quad \mathbf{G}=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]$
- Geometric basis

$$
\mathbf{B}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

- Polynomial basis

$$
T=\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

- In components

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
p_{0 x} & p_{1 x} \\
p_{0 y} & p_{1 y} \\
p_{0 z} & p_{1 z}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Tangent

- For a straight line, the tangent is constant

$$
\mathbf{x}^{\prime}(t)=\mathbf{p}_{1}-\mathbf{p}_{0}
$$

- Weighted average $\mathbf{x}^{\prime}(t)=(-1) \mathbf{p}_{0}+(+1) \mathbf{p}_{1}$
- Polynomial

$$
\mathbf{x}^{\prime}(t)=0 t+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

- Matrix form $\quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Bézier Curves

- Are a higher order extension of linear interpolation

Linear
Quadratic
Cubic
쿤 UCSD

Bézier Curves

- Give intuitive control over curve with control points
- Endpoints are interpolated, intermediate points are approximated
- Convex Hull property
- Many demo applets online, for example:
- Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.htm|
- http://www.theparticle.com/applets/nyu/BezierApplet/
- http://www.sunsite.ubc.ca/LivingMathematics/V00IN0I/UBCExamples/B ezier/bezier.html

Cubic Bézier Curve

- Most commonly used case
- Defined by four control points:
, Two interpolated endpoints (points are on the curve)
- Two points control the tangents at the endpoints
- Points \mathbf{x} on curve defined as function of parameter t

Algorithmic Construction

- Algorithmic construction

De Casteljau algorithm, developed at Citroen in 1959, named after its inventor Paul de Casteljau (pronounced "Cast-all-’Joe")

- Developed independently from Bézier's work: Bézier created the formulation using blending functions, Casteljau devised the recursive interpolation algorithm

De Casteljau Algorithm

- A recursive series of linear interpolations
- Works for any order Bezier function, not only cubic
- Not very efficient to evaluate
- Other forms more commonly used
- But:
- Gives intuition about the geometry
- Useful for subdivision

De Casteljau Algorithm

- Given:
- Four control points
- A value of t (here $t \approx 0.25$)

De Casteljau Algorithm

De Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)
\end{aligned}
$$

De Casteljau Algorithm

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
$$

De Casteljau Algorithm

- Applets

- Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
- http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html
- 36

근 UCSD

Recursive Linear Interpolation

$$
\begin{aligned}
& \mathbf{r}_{1}=\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right) \begin{array}{l}
\mathbf{q}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) \\
\mathbf{q}_{2}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)
\end{array} \mathbf{p}_{2} \\
& \mathbf{p}_{3}
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}
\end{aligned}
$$

$$
\mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)
$$

$$
\mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)
$$

$$
\begin{aligned}
\mathbf{x}(t)= & \operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right) \\
= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right)
\end{aligned}
$$

Weighted Average of Control Points

- Regroup for p :

$$
\begin{aligned}
\mathbf{x}(t)= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right) \\
\mathbf{x}(t)= & (1-t)^{3} \mathbf{p}_{0}+3(1-t)^{2} t \mathbf{p}_{1}+3(1-t) t^{2} \mathbf{p}_{2}+t^{3} \mathbf{p}_{3} \\
\mathbf{x}(t)= & \overbrace{\left(-t^{3}+3 t^{2}-3 t+1\right)}^{B_{0}(t)} \mathbf{p}_{0}+\overbrace{\left(3 t^{3}-6 t^{2}+3 t\right)}^{B_{1}(t)} \mathbf{p}_{1} \\
& +\underbrace{\left(-3 t^{3}+3 t^{2}\right)}_{B_{2}(t)} \mathbf{p}_{2}+\underbrace{\left(t^{3}\right)}_{B_{3}(t)} \mathbf{p}_{3}
\end{aligned}
$$

Cubic Bernstein Polynomials

$$
\mathbf{x}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3}
$$

The cubic Bernstein polynomials :

$$
\begin{aligned}
B_{0}(t) & =-t^{3}+3 t^{2}-3 t+1 \\
B_{1}(t) & =3 t^{3}-6 t^{2}+3 t \\
B_{2}(t) & =-3 t^{3}+3 t^{2} \\
B_{3}(t) & =t^{3} \\
\hline \sum B_{i}(t) & =1
\end{aligned}
$$

Bernstein Cubic Polynomials

- Weights $\mathrm{B}_{\mathrm{i}}(t)$ add up to I for any value of t

General Bernstein Polynomials

$$
\begin{array}{lll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 & B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t & B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}^{2}(t)=t^{2} & B_{2}^{3}(t)=-3 t^{3}+3 t^{2} \\
& & B_{3}^{3}(t)=t^{3}
\end{array}
$$

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \quad\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

$$
\sum B_{i}^{n}(t)=1 \quad \mathrm{n}!=\text { factorial of } \mathrm{n}
$$

$$
(n+1)!=n!\times(n+1)
$$

General Bézier Curves

n th-order Bernstein polynomials form n th-order Bézier curves

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \\
& \mathbf{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{p}_{i}
\end{aligned}
$$

