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Announcements

� Project 5 due Friday

� Heads Up: CSE 190

� Advanced Computer Graphics

� Prof. Ravi Ramamoorthi

� http://cseweb.ucsd.edu/~ravir/190/2015/190.html
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Video

� Bezier Curves

� http://www.youtube.com/watch?v=hlDYJNEiYvU
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Curves

� Can be generalized to surface patches
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Curve Representation
� Specify many points along a curve, connect with lines?  

� Difficult to get precise, smooth results across magnification levels

� Large storage and CPU requirements

� How many points are enough?

� Specify a curve using a small number of “control points”
� Known as a spline curve or just spline

Control 

point
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Spline: Definition

� Wikipedia:

� Term comes from flexible spline 
devices used by shipbuilders and 
draftsmen to draw smooth shapes.

� Spline consists of a long strip fixed 
in position at a number of points 
that relaxes to form a smooth curve 
passing through those points.
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Interpolating Control Points

� “Interpolating” means that curve goes through all control 
points

� Seems most intuitive

� Surprisingly, not usually the best choice

� Hard to predict behavior

� Hard to get aesthetically pleasing curves
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Approximating Control Points

� Curve is “influenced” by control points

� Various types

� Most common: polynomial functions

� Bézier spline (our focus)

� B-spline (generalization of Bézier spline)

� NURBS (Non Uniform Rational Basis Spline): used in CAD tools
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� A vector valued function of one variable x(t)

� Given t, compute a 3D point x=(x,y,z)

� Could be interpreted as three functions: x(t), y(t), z(t)

� Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)
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Tangent Vector

� Derivative

� Vector x’ points in direction of movement

� Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Polynomial Functions

� Linear:
(1st order)

� Quadratic:
(2nd order)

� Cubic:
(3rd order)
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Polynomial Curves

� Linear

� Evaluated as:
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Polynomial Curves

� Quadratic:
(2nd order)

� Cubic:
(3rd order)

� We usually define the curve for 0 ≤ t ≤ 1
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Control Points

� Polynomial coefficients a, b, c, d can be interpreted as 
control points

� Remember: a, b, c, d have x,y,z components each

� Unfortunately, they do not intuitively describe the shape of 
the curve

� Goal: intuitive control points
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Control Points

� How many control points?

� Two points define a line (1st order)

� Three points define a quadratic curve (2nd order)

� Four points define a cubic curve (3rd order)

� k+1 points define a k-order curve

� Let’s start with a line…
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First Order Curve

� Based on linear interpolation (LERP)

� Weighted average between two values

� “Value” could be a number, vector, color, …

� Interpolate between points p0 and p1 with parameter t

� Defines a “curve” that is straight (first-order spline)

� t=0 corresponds to p0

� t=1 corresponds to p1

� t=0.5 corresponds to midpoint

p0

p1

t=1

.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1( )= 1− t( )p0 + t  p1
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Linear Interpolation

� Three equivalent ways to write it

� Expose different properties

1. Regroup for points p

2. Regroup for t

3. Matrix form
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Weighted Average

� Weights are a function of t

� Sum is always 1, for any value of t

� Also known as blending functions

x(t) = (1 − t)p0 +    (t)p1

= B0 (t) p0 + B1(t)p1, where B0 (t) = 1 − t  and B1(t) = t
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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� Curve is based at point p0

� Add the vector, scaled by t

.

 

x(t) = (p1 − p0 )

vector
124 34

 t +    p0    

point
123

p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.
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� Geometry matrix

� Geometric basis

� Polynomial basis

� In components

Matrix Form
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� Geometry matrix

� Geometric basis

� Polynomial basis

� In components

Matrix Form
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Tangent

� For a straight line, the tangent is constant

� Weighted average

� Polynomial

� Matrix form
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Bézier Curves

� Are a higher order extension of linear interpolation

p0

p1

p0

p1

p2

p0

p1

p2

p3

Linear Quadratic Cubic
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Bézier Curves

� Give intuitive control over curve with control points
� Endpoints are interpolated, intermediate points are 
approximated

� Convex Hull property

� Many demo applets online, for example:
� Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

� http://www.theparticle.com/applets/nyu/BezierApplet/

� http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/B
ezier/bezier.html

28



Cubic Bézier Curve
� Most commonly used case

� Defined by four control points:
� Two interpolated endpoints (points are on the curve)

� Two points control the tangents at the endpoints

� Points x on curve defined as function of parameter t

29

p0

p1

p2

p3

x(t)
•



Algorithmic Construction

� Algorithmic construction

� De Casteljau algorithm, developed at Citroen in 1959, 
named after its inventor Paul de Casteljau (pronounced 
“Cast-all-’Joe”)

� Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm

30



De Casteljau Algorithm

� A recursive series of linear interpolations

� Works for any order Bezier function, not only cubic

� Not very efficient to evaluate

� Other forms more commonly used

� But:

� Gives intuition about the geometry

� Useful for subdivision
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De Casteljau Algorithm

p0

p1

p2

p3

� Given:

� Four control points

� A value of t (here t≈0.25)
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De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1( )

q1(t) = Lerp t,p1,p2( )

q2 (t) = Lerp t,p2 ,p3( )
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De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)( )

r1(t) = Lerp t,q1(t),q2 (t)( )
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De Casteljau Algorithm

r1x

r0
•

x(t) = Lerp t,r0 (t),r1(t)( )
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x
•

p0

p1

p2

p3

De Casteljau Algorithm

�Applets
� Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html

� http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html
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x = Lerp t,r0 ,r1( )
r0 = Lerp t,q0 ,q1( )

r1 = Lerp t,q1,q2( )

q0 = Lerp t,p0 ,p1( )

q1 = Lerp t,p1,p2( )

q2 = Lerp t,p2 ,p3( )

p0

p1

p2

p3

        p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation
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Expand the LERPs

q0 (t) = Lerp t,p0 ,p1( )= 1− t( )p0 + tp1

q1(t) = Lerp t,p1,p2( )= 1− t( )p1 + tp2

q2 (t) = Lerp t,p2 ,p3( )= 1− t( )p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )

r1(t) = Lerp t,q1(t),q2 (t)( )= 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )

x(t) = Lerp t,r0 (t),r1(t)( )

= 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

       +t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )
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x(t) = 1 − t( ) 1− t( ) 1 − t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

+t 1− t( ) 1 − t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

x(t) = 1 − t( )
3
p0 + 3 1 − t( )

2
tp1 + 3 1 − t( )t

2
p2 + t

3
p3

x(t) = −t
3

+ 3t
2

− 3t + 1( )

B0 (t )6 7444 8444

p0 + 3t
3

− 6t
2

+ 3t( )

B1 (t )6 744 844

p1

+ −3t
3

+ 3t
2( )

B2 (t )

1 24 34
p2 + t

3( )
B3 (t )

{
p3

Weighted Average of Control Points

� Regroup for p:
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� Weights Bi(t) add up to 1 for any value of t

                    x(t) = B0 t( )p0 + B1 t( )p1 + B2 t( )p2 + B3 t( )p3

The cubic Bernstein polynomials :

                    B0 t( )= −t
3

+ 3t
2

− 3t + 1

                    B1 t( )= 3t
3

− 6t
2

+ 3t

                    B2 t( )= −3t
3

+ 3t
2

                    B3 t( )= t
3                        

                Bi (t) = 1∑

Cubic Bernstein Polynomials
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General Bernstein Polynomials

B0

1
t( )= −t + 1      B0

2
t( )= t

2
− 2t + 1     B0

3
t( )= −t

3
+ 3t

2
− 3t + 1

B1

1
t( )= t B1

2
t( )= −2t

2
+ 2t B1

3
t( )= 3t

3
− 6t

2
+ 3t

B2

2
t( )= t

2
B2

3
t( )= −3t

3
+ 3t

2

B3

3
t( )= t

3

Bi

n
t( )=

n

i







1 − t( )

n− i
t( )

i n

i







=

n!

i! n − i( )!

Bi

n
t( )∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
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General Bézier Curves

� nth-order Bernstein polynomials form nth-order 
Bézier curves

Bi

n
t( )=

n

i







1− t( )

n− i
t( )

i

x t( )= Bi

n
t( )pi

i=0

n

∑
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