CSE 165: 3D User Interaction

Lecture #16: 3D UI Design

Instructor: Jurgen Schulze, Ph.D.

Announcements

• Homework Assignment #5

- Due Thursday March 19th at 3pm
- First blog due Wed March 11th
- Second blog due Wed March 18th

CAPE

- Submit CAPE forms on-line in weeks 9+10
- Responses to all surveys are completely **anonymous**.
- Only a **summary** of results is provided to the CS department and the instructor.
- This summary is provided **AFTER final grades** have been posted.
- A minimum number of **three** evaluations must be submitted by students for summaries to made available.

WAVE Lab Tour

- Next Tuesday's lecture (2-3:20pm) is going to be held in the SME building's WAVE lab (room SME 141)
- We'll meet in the classroom, then walk over to the SME building
- If you're late meet us there: follow the arrows on the map on the next slide; last arrow points to lab door on outside of building (don't go through main entrance)

Independent Research (CSE199)

- JVC Tangible Globe
- Viewer-dependent image warping
- Spring quarter
- Looking for 1-2 people

7

3D UI Design Strategies

Thus far...

- 3DUI hardware
 - Output
 - o Input
- Universal 3DUI tasks
 - Selection
 - Manipulation
 - Navigation
 - System control
 - Symbolic input

But: The combination of techniques and devices alone does not guarantee an enjoyable experience!

3DUI Design

- Microlevel: implementation
 - 3D interaction programming: hard!
 - Testing: difficult and hard to automate
 - Tweaking UI parameters: important but time consuming
- Macrolevel: guidelines
 - Strengths and limitations of human psychology/physiology
 - Common sense
 - Rules of thumb
 - Example: people naturally use 2 hands, so using 2 hands in a 3D UI might improve usability/performance

3DUI Design

• Two main strategies

• Designing for humans

• Match design to human strengths

• Inventing 3D interaction techniques

• Creative exploration of 3D Uls

Designing for Humans - Feedback

- Feedback is critical to usable 3D interfaces
 - User feedback is any information conveyed to the user to help understand
 - system state
 - result of operation
 - status of task
- Feedback control mechanism
 - Example: turning a knob produces feedback by
 - External sources: the knob
 - Internal sources: user's body
- Want to have appropriate feedback levels
- Ensure compliance (agreement) between different levels/types of feedback

Designing for Humans – Feedback in Multiple Dimensions

- Sensory dimensions
 - Visual, auditory, tactile, olfactory
 - Proprioceptive: relative position of neighboring parts of the body
 - Kinesthetic: bodily motion
- Want to try to give multi-dimensional feedback
 - Can be difficult due to technology (e.g., haptic devices)
 - Sensory feedback substitution
 - Example: visual/audio cues compensate for missing haptic feedback
- System-based feedback
 - Reactive from sensory dimensions
 - Instrumental generated by devices
 - Operational changes in virtual world

Designing for Humans – Compliance

- Main principle in design feedback
- Want different feedback dimensions in sync
 - Maintain spatial and temporal correspondence between multiple feedback dimensions
- Feedback displacement is bad!
 - Example: hand and virtual object move in different directions

Designing for Humans – Spatial Compliance

- Directional compliance virtual object should move in the same direction as manipulated by input device
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
- Instrumental and operational feedback also require spatial compliance
 - Example: real and virtual hand should be aligned

Designing for Humans – Temporal Compliance

- Latency typical problem
 - Temporal delay between user input and sensory feedback
 - Incompliance with internal feedback
- Variable latency can be even more problematic
- Solutions?
 - Reduce scene complexity
 - Faster hardware
 - Predictive tracking

Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

Highlighting object about to be selected

Spring Manipulation Tools, Michal Koutek, TU Delft

Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
 - User both sees and feels
- Advantages
 - Inexpensive haptic/tactile feedback
 - Establish perceptual frame of reference
- Disadvantages
 - Scalability
 - Performance improvements have not yet been measured

Designing for Humans – Constraints

- Constraints:
 - Are a relation between variables that must be satisfied
 - Example: a line should stay horizontal
 - Define geometrical coherence of scene
 - Can make interaction simpler and improve accuracy

Designing for Humans – Constraint Types

- Physically realistic constraints
 - Collision detection and avoidance
 - Gravity
 - Application dependent
- DOF reduction
 - Simplify interaction (example: constrain travel to ground)
- Dynamic alignment tools
 - Grids and snapping, guiding surfaces
- Intelligent constraints
 - Deal with semantics
 - Example: lamp can only stand on horizontal surfaces

Designing for Humans – Two Handed Control

- Also known as bimanual input
- Transfer everyday manipulation experiences to 3DUI
- Can increase user performance on certain tasks
- Active topic of research

Designing for Humans – Guiard's Framework

- Tasks are
 - Unimanual: throwing darts
 - Bimanual symmetric
 - Synchronous: pulling a rope
 - Asynchronous: typing on keyboard
 - Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other
- Division of labor (hand roles) for asymmetric scenario:
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements, nondominant hand performs gross manipulation
 - Manipulation is initiated by nondominant hand

Designing for Different User Groups

• Age

- Prior 3DUI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
 - Color recognition
 - Stereo vision
 - Spatial abilities

Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue

24

3DUI Design Strategies

Designing for humans
 Match design to human strengths
 Inventing 3D interaction techniques
 Creative exploration of 3D Uls

Inventing 3D User Interfaces

Realism (or isomorphism)
Borrowing from real world
Magic (or non-isomorphism)
Deviating from the real world and introducing artificial, magic techniques
Continuum between realism and magic

Inventing 3DUIs – Simulating Reality

- Tried and true approach
 - replicate world as close as possible
 - bring in certain elements
- Important for simulation applications
 - flight simulators
 - medical training
 - phobia treatment
- Dependent on application
- Advantages
 - User already knows how to do it from everyday experience
 - Can be implemented on the basis of designer intuition
- Disadvantages
 - Limitations of technology do not allow exact realism
 - Introduces limitations of the physical world into the virtual world

Inventing 3DUIs – Adopting from the Real World

- Adopt artifacts, ideas, philosophies, domains
- Architecture and movies
- Real-world metaphors
- Examples
 - o virtual vehicle
 - flashlight
 - o shadows

Inventing 3DUIs – Adapting from 2D

- 2D UIs studied extensively
- Most people fluent with 2D interaction
- Can be easier than 3D
- Approaches
 - 2D overlay
 - Elements in 3D environment
 - 2D interaction with 3D objects
 - UI on separate device, e.g., Ipad

28

Inventing 3DUIs – Magic and Aesthetics

- Real power of 3DUIs
 - better reality
 - o alternate reality
- Overcome human limitations
- Reduces effects of technological limitations

http://www.cantonmagicrafters.com/images/rabbit.jpg

Magic: Cultural Clichés & Metaphors

• Examples: Flying carpet, Go-Go, WIM

• Advantages:

- easy to understand if you know the metaphor
- usually they are very enjoyable
- many metaphors are available
- need not to be learned

• Disadvantages:

- the metaphors can be misleading
- the metaphors are often rooted in culture
- it is difficult to come up with good magic metaphor

3D UI Evaluation

Why User Evaluation?

- Need to compare
 - devices
 - interaction techniques
 - Applications
- Problem identification and redesign
- General usability understanding

Some Terminology

- Usability everything about an artifact and what affects a person's use of an artifact
- Evaluator person who designs, administers, implements, or analyzes an evaluation
- Subject person who takes part in the evaluation

Evaluation Tools

- User task analysis
 - generates list of detailed task descriptions, sequences, user work, and information flow
- Scenarios
 - built from task analysis
 - important for experiment design
- Taxonomy
 - science of classification
 - break down techniques into components
 - used in evaluation process
- Prototyping
 - need to have something to test
 - paper-based sketches
 - Wizard of Oz approach

Evaluation Methods

- Cognitive walkthrough
- Heuristic evaluation
- Formative evaluation
 - observational user studies
 - questionnaires, interviews
- Summative evaluation
 - task-based usability evaluation
 - formal experimentation
- Questionnaires
- Interviews and Demos

Evaluation Metrics – System Performance

- System performance metrics
- Average frame rate (fps)
- Average latency / lag (milliseconds)
- Variability in frame rate / lag
- Network delay
- Distortion
- Only important for its effects on user performance / preference
 - frame rate affects presence
 - network delay affects collaboration

Evaluation Metrics – Task Performance

- Speed / efficiency
- Accuracy
- Domain-specific metrics
 - education: learning
 - training: spatial awareness
 - design: expressiveness

Evaluation Metrics – User Preference

- Ease of use / learning
- Presence
- User comfort
- Usually subjective (measured in questionnaires, interviews)

User Comfort

- Simulator sickness
 - Kennedy Simulator Sickness Questionnaire (SSQ)
- Aftereffects of VE exposure
 - Stanney 1998: Aftereffects from virtual environment exposure: How long do they last?
- Arm/hand strain
- Eye strain