
CSE 167:
Introduction to Computer Graphics
Lecture #7: Textures

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2018

Announcements
 Project 2 due this Friday at 2pm
 Grading in CSE basement labs B260 and B270
 This time using Autograder (no whiteboard)
 Upload code to TritonEd by 2pm

2

Faculty Mentor Program
UC San Diego faculty members can support undergraduate research by participating in the 2017-
18 Faculty Mentor Program (FMP) and providing an undergraduate an opportunity to serve as a
research assistant. In addition to the research experience, students in the program receive
two quarters of 199 credit (10h/week), attend training sessions and workshops conducted by
Academic Enrichment Programs (AEP), and present their findings at the annual Spring FMP
Symposium.

Students participating in FMP must have junior or senior standing, and must meet GPA and other
requirements.

Those faculty members who have a student in mind can refer the student to AEP for formal
placement. Faculty members working with more than one student can work with AEP to create a
cohort experience for them.

Early application is encouraged (students have an application deadline of November
1st). More information is available at fmp.ucsd.edu.

3

Texture Mapping

Lecture Overview
 Texture Mapping
 Overview
 Wrapping
 Texture coordinates
 Anti-aliasing

5

Large Triangles
Pros:
 Often sufficient for simple

geometry
 Fast to render
Cons:
 Per vertex colors look boring

and computer-generated

6

Texture Mapping
 Map textures (images) onto

surface polygons
 Same triangle count, much more

realistic appearance

7

Texture Mapping
 Goal: map locations in texture to

locations on 3D geometry
 Texture coordinate space
 Texture pixels (texels) have texture

coordinates (s,t)
 Convention
 Bottom left corner of texture is at

(s,t) = (0,0)
 Top right corner is at (s,t) = (1,1)

(1,1)

(0,0) s

t

Texture coordinates

8

Texture Mapping
 Store 2D texture coordinates s,t with each triangle vertex

(0.4,0.45)
(0.6,0.4)

(1,1)

(0,0) s

t

Texture coordinates

(0.65,0.75)

v1
(s,t) = (0.65,0.75)

Triangle in any space before projection

v0
(s,t) = (0.6,0.4)

v2
(s,t) = (0.4,0.45)

9

Texture Mapping
 Each point on triangle gets color from its corresponding

point in texture

(0.4,0.45)
(0.6,0.4)

(1,1)

(0,0) s

t

(0.65,0.75)

v1
(s,t) = (0.65,0.75)

v0
(s,t) = (0.6,0.4)

v2
(s,t) = (0.4,0.45)

Texture coordinates
Triangle in any space before projection

10

Texture Mapping

Includes texture mapping

Frame-buffer access
(z-buffering)

Modeling and viewing
transformation

Shading

Projection

Rasterization

Primitives

Image

Fragment processing

11

Texture Look-Up
 Given interpolated texture coordinates (s, t) at current

pixel
 Closest four texels in texture space are at

(s0,t0), (s1,t0), (s0,t1), (s1,t1)

 How to compute pixel color?

12

t1

t

t0
s0 s s1

Nearest-Neighbor Interpolation
 Use color of closest texel

 Simple, but low quality and aliasing

13

t1

t

t0
s0 s s1

Bilinear Interpolation
1. Linear interpolation horizontally:

Ratio in s direction rs:

ctop = tex(s0,t1) (1-rs) + tex(s1,t1) rs

cbot = tex(s0, t0) (1-rs) + tex(s1,t0) rs

14

01

0

ss
ssrs −

−
=

t1

t

t0
s0 s s1

ctop

cbot

2. Linear interpolation vertically
Ratio in t direction rt:

c = cbot (1-rt) + ctop rt

Bilinear Interpolation

15

01

0

tt
ttrt −

−
=

t1

t

t0
s0 s s1

ctop

cbot

c

Texture Filtering in OpenGL
 GL_NEAREST: Nearest-Neighbor interpolation
 GL_LINEAR: Bilinear interpolation
 Example:

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

16

Source: https://open.gl/textures

Lecture Overview
 Texture Mapping
 Wrapping
 Texture coordinates
 Anti-aliasing

17

Wrap Modes
 Texture image extends from [0,0] to [1,1] in texture

space
 What if (s,t) texture coordinates are beyond that range?

 Texture wrap modes

18

Texture Space

(0,0)

(1,1)

Repeat
 Repeat the texture
 Creates discontinuities at edges

 unless texture is designed to line up

19

s

t

Seamless brick wall texture
(by Christopher Revoir)

s

t

Texture Space

(0,0)

(1,1)

Clamp
 Use edge value everywhere outside data range [0..1]
 Or use specified border color outside of range [0..1]

20

Wrap Modes in OpenGL
 Default:

 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

 Options for wrap mode:
 GL_REPEAT
 GL_MIRRORED_REPEAT
 GL_CLAMP_TO_EDGE: repeats last pixel in the texture
 GL_CLAMP_TO_BORDER: requires border color to be set

21
Source: https://open.gl/textures

Lecture Overview
 Texture Mapping
 Wrapping
 Texture coordinates
 Anti-aliasing

22

Texture Coordinates
What if texture extends across multiple polygons?
 Surface parameterization
 Mapping between 3D positions on surface and 2D texture

coordinates
 Defined by texture coordinates of triangle vertices

 Options for mapping:
 Cylindrical
 Spherical
 Orthographic
 Parametric
 Skin

23

Cylindrical Mapping
 Similar to spherical mapping, but with cylindrical coordinates

24

Spherical Mapping
 Use spherical coordinates
 “Shrink-wrap” sphere to object

25

Texture map Mapping result

Orthographic Mapping
 Use linear transformation of object’s xyz coordinates
 Example:

26



























=









w
z
y
x

t
s

0010
0001

xyz in object space xyz in camera space

Parametric Mapping
 Surface given by parametric functions

 Very common in CAD
 Clamp (u,v) parameters to [0..1] and use as texture

coordinates (s,t)

27

Skin Mapping

28

Lecture Overview
 Texture Mapping
 Wrapping
 Texture coordinates
 Anti-aliasing

29

Aliasing
 What could cause this aliasing effect?

30

Aliasing

Sufficiently
sampled,
no aliasing

Insufficiently
sampled,
aliasing

High frequencies in the input data can appear as
lower frequencies in the sampled signal

31

Image: Robert L. Cook

Antialiasing: Intuition
 Pixel may cover large area on triangle in camera space
 Corresponds to many texels in texture space
 Need to compute average

Texture spaceCamera spaceImage plane

Pixel area

Texels

32

Antialiasing Using Mip-Maps
 Averaging over texels is expensive
 Many texels as objects get smaller
 Large memory access and compuation cost

 Precompute filtered (averaged) textures
 Mip-maps

 Practical solution to aliasing problem
 Fast and simple
 Available in OpenGL, implemented in GPUs
 Reasonable quality

33

Mipmaps
 MIP stands for multum in parvo = “much in little” (Williams

1983)
Before rendering
 Pre-compute and store down scaled versions of textures
 Reduce resolution by factors of two successively
 Use high quality filtering (averaging) scheme

 Increases memory cost by 1/3
 1/3 = ¼+1/16+1/64+…

 Width and height of texture should be powers of two (non-
power of two supported since OpenGL 2.0)

34

Mipmaps
 Example: resolutions 512x512, 256x256, 128x128, 64x64,

32x32 pixels

“multum in parvo”
Level 0

Level 1

2
3

4

35

Mipmaps
 One texel in level 4 is the average of 44=256 texels in

level 0

“multum in parvo”
Level 0

Level 1

2
3

4

36

Mipmaps

Level 0 Level 1 Level 2

Level 3 Level 437

Rendering With Mipmaps
 “Mipmapping”
 Interpolate texture coordinates of each pixel as without

mipmapping
 Compute approximate size of pixel in texture space
 Look up color in nearest mipmap
 E.g., if pixel corresponds to 10x10 texels use mipmap level 3
 Use nearest neighbor or bilinear interpolation as before

38

Mipmapping
Texture spaceCamera spaceImage plane

Pixel area

Texels

Mip-map level 0
Mip-map level 1
Mip-map level 2
Mip-map level 339

Nearest Mipmap, Nearest Neighbor
 Visible transition between mipmap levels

40

Nearest Mipmap, Bilinear
 Visible transition between mipmap levels

41

Trilinear Mipmapping
 Use two nearest mipmap levels
 E.g., if pixel corresponds to 10x10 texels, use mipmap levels 3

(8x8) and 4 (16x16)

 2-Step approach:
 Step 1: perform bilinear interpolation in both mip-maps
 Step 2: linearly interpolate between the results

 Requires access to 8 texels for each pixel
 Supported by hardware without performance penalty

42

Anisotropic Filtering
 Method of enhancing the image

quality of textures on surfaces that
are at oblique viewing angles

 Different degrees or ratios of
anisotropic filtering can be applied

 The degree refers to the maximum
ratio of anisotropy supported by the
filtering process. For example, 4:1
anisotropic filtering supports pre-
sampled textures up to four times
wider than tall

43

More Info
 Mipmapping tutorial w/source code:
 http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php

44

http://www.videotutorialsrock.com/opengl_tutorial/mipmapping/text.php

OpenGL Example: Loading a Texture

45

// Loads image as texture, returns ID of texture
GLuint loadTexture(Image* image)
{
GLuint textureId;

glGenTextures(1, &textureId); // Get unique ID for texture
glBindTexture(GL_TEXTURE_2D, textureId); // Tell OpenGL which texture to edit
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // set bi-linear interpolation
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // for both filtering modes
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // set texture edge mode
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

Image* image = loadJPG(“photo.jpg"); // load image from disk; uses third party Image library

// Depending on the image library, the texture image may have to be flipped vertically

// Load image into OpenGL texture in GPU memory:
glTexImage2D(GL_TEXTURE_2D, // Always GL_TEXTURE_2D for image textures

0, // 0 for now
GL_RGB, // Format OpenGL uses for image without alpha channel
image->width, image->height, // Width and height
0, // The border of the image
GL_RGB, // GL_RGB, because pixels are stored in RGB format
GL_UNSIGNED_BYTE, // GL_UNSIGNED_BYTE, because pixels are stored as unsigned numbers
image->pixels); // The actual RGB image data

return textureId; // Return the ID of the texture
}

Vertex Shader
#version 150

in vec3 vert;

in vec2 vertTexCoord;

out vec2 fragTexCoord;

void main()

{

// Pass the tex coord straight through to the fragment shader

fragTexCoord = vertTexCoord;

gl_Position = vec4(vert, 1);

}

46

Fragment Shader
#version 150

uniform sampler2D tex; // this is the texture

in vec2 fragTexCoord; // these are the texture coordinates

out vec4 finalColor; // this is the output color of the pixel

void main()

{

finalColor = texture(tex, fragTexCoord);

}

47

	CSE 167:�Introduction to Computer Graphics�Lecture #7: Textures
	Announcements
	Faculty Mentor Program
	Texture Mapping
	Lecture Overview
	Large Triangles
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Look-Up
	Nearest-Neighbor Interpolation
	Bilinear Interpolation
	Bilinear Interpolation
	Texture Filtering in OpenGL
	Lecture Overview
	Wrap Modes
	Repeat
	Clamp
	Wrap Modes in OpenGL
	Lecture Overview
	Texture Coordinates
	Cylindrical Mapping
	Spherical Mapping
	Orthographic Mapping
	Parametric Mapping
	Skin Mapping
	Lecture Overview
	Aliasing
	Aliasing
	Antialiasing: Intuition
	Antialiasing Using Mip-Maps
	Mipmaps
	Mipmaps
	Mipmaps
	Mipmaps
	Rendering With Mipmaps
	Mipmapping
	Nearest Mipmap, Nearest Neighbor
	Nearest Mipmap, Bilinear
	Trilinear Mipmapping
	Anisotropic Filtering
	More Info
	OpenGL Example: Loading a Texture
	Vertex Shader
	Fragment Shader

