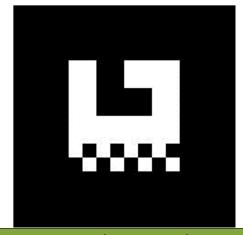
Winter 2013

CSE 190: 3D User Interaction

Lecture #6: Input Devices Part 2 Jürgen P. Schulze, Ph.D.

Announcements


- Homework assignment #2 due Friday, February 8th at 1pm
- New, more detailed paper presentations section on course web site
- Schedule paper presentations

Optical Tracking: ARToolKit

- Developed in 1999 by Hirokazo Kato, HITLab, University of Washington
- Printable markers
- Camera based (webcam sufficient)
- Flexible marker design
- Simple programming interface
- 6 DOF tracking possible

ARToolKit

ARToolKit marker

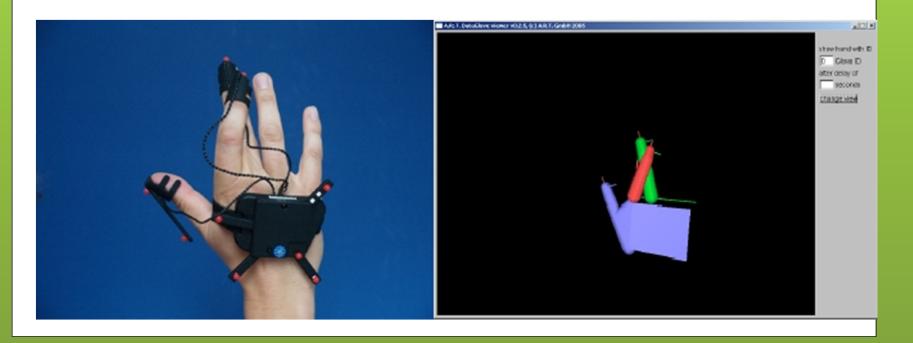
Video

- Augmented Reality by Hitlab
 - http://www.frequency.com/video/augmen ted-reality-by-hitlab/2556268

Optical Tracking: Mocap Devices

- Infrared (IR) cameras illuminate scene for easier detection of markers
- Multiple markers (highly reflective spheres) arranged in fixed, known configurations allow for 6 DOF tracking

ART Tracking System



Vicon Tracking System

carries the dengue virus

Optical Finger Tracking

- Extension of ART system
- Tracks three fingers and the hand

Optical Tracking: HiBall

- HiBall-3100 tracker system, distributed by 3rd Tech
- Developed within wide-area tracking research project at UNC Chapel Hill
- System is composed of:
 - HiBall Optical Sensor
 - Views infrared LEDs in beacon arrays on ceiling with 6 lenses and photodiodes
 - Ceiling beacon arrays
- Tracker update rate: 2,000 Hz
- No metal or sound interference

HiBall beacon array

Ultrasonic Tracking

Logitech 3D Mouse

- Systems measure duration of an ultrasound signal to reach microphones.
- InterSense system uses combination of ultrasound and gyroscope.

InterSense IS-900 tracker

InterSense IS-900 Wand

Hybrid Devices: Haptic Feedback Devices

- PHANTOM haptic device
- Force feedback joystick
- Exoskeleton-like devices

Microsoft force

feedback joystick

LEXOS: Frisoli et. al., Italy

Immersion CyberForce

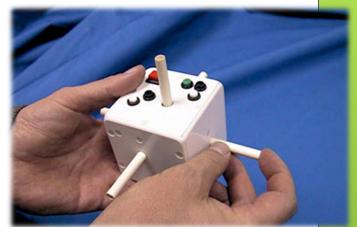
SensAble PHANToM

Tracking Devices: Bend-Sensing Gloves

- CyberGlove, 5DT
- Reports hand posture
- Gesture:
 - o single posture
 - series of postures
 - posture(s) + location or motion

Pinch Glove

- Pinch Gloves
 - Determine if two or more fingertips are touching
 - Use conductive cloth to close circuit
 - Tethered to controller box
 - Designed for pinching and grabbing gestures
 - Recognize any gesture of 2 to 10 fingers touching, plus combinations of gestures
 - Price at the time \$2000
 - Had problems with reliability



www.fakespacelabs.com

Special Purpose Device:
Cubic Mouse

- Developed 1999 at Fraunhofer Institute by B. Frohlich and J. Plate
- Cube shaped box with three rods represents a physical coordinate system
- 6DOF tracker is inside cube
- Rods used to manipulate x-, y-, and z- coordinates of an object (built for controlling cutting planes)
- Target application area: volume rendering for oil and gas industry

Application-Specific Devices


- Virtual hang-gliding over Rio de Janeiro (L. Soares at. al.)
- Virtual canoe, Siggraph2005
 - Real-time water simulator with pre-computed 3D fluid dynamics
 - Creates realistic wakes and force feedback of water resistance

Cave Painting

- Physical props (brush, color palette, bucket) allow intuitive painting
- System created by Daniel Keefe at Brown University (now Prof. at Univ. of Minnesota)

3D Input Devices Today

Nintendo Wiimote

PlayStation Move

Microsoft Kinect

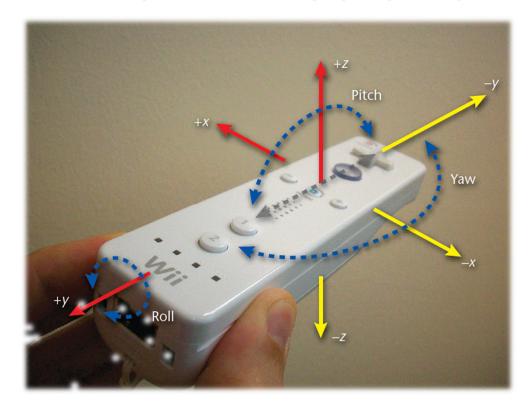
Leap Motion

Razer Hydra

Video game motion controllers at consumer prices!

The Wiimote Device

- Uses Bluetooth for communication
- Senses acceleration along 3 axes
 - Used for sports games (tennis, bowling, etc.)
- 128x96 pixel monochrome camera with built-in image processing, requires sensor bar
 - Enables 2D on-screen pointer
- Standard buttons and trigger
- Provides audio and rumble feedback
- Up to 4 Wiimotes can be active simultaneously
- Connector for attachments
 - Nunchuck
 - Wii Zapper
 - Wii Wheel



Wii Wheel

Sensor Bar

The Wiimote – Coordinates

- Some data comes directly from physical sensors
- Some data mathematically derived from sensors

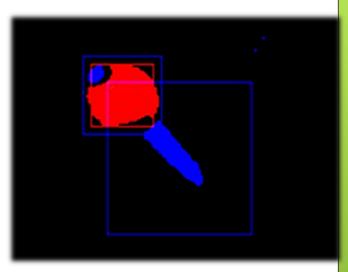
The Wii Motion Plus

- Initially (June 2009) optional add-on, now built-in
- Uses 3-axis gyroscope
- Captures relative 3D orientation
- Improves pose and motion estimation
- Information captured by gyroscope can be used to distinguish true linear motion from accelerometer readings

PlayStation Move

- Consists of
 - Playstation Eye camera
 - 1 to 4 motion controllers
 - Eye + 1 controller = ca. \$80
- Features
 - Combines camera tracking with motion sensing
 - 6 DOF tracking (position and orientation)
 - Several buttons on front of device
 - Analog button on back of device
 - Vibration feedback
 - Wireless and USB connectivity

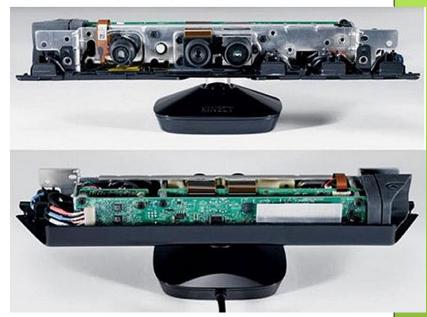
PlayStation Move – Hardware


- PlayStation Eye
 - 640 x 480 (60Hz)
 - 320 x 240 (120Hz)
 - Microphone array
- Move Controller
 - 3-axis accelerometer
 - 3-axis angular rate gyroscope
 - Magnetometer: helps to calibrate and correct for drift
 - 44mm diameter sphere with RGB LEDs
 - Used for position tracking
 - Invariant to rotation
 - Provides own light source
 - Color ensures visual uniqueness

www.hardwaresphere.com

PlayStation Move – 6 DOF Tracking

- Image Analysis
 - Find sphere in image with segmentation algorithm
 - Given focal length and size of sphere in image, calculate 3D position
- Sensor Fusion
 - Combines results from image analysis with inertial sensors
 - Accelerometer
 - Gives pitch and roll angles when controller is stationary
 - Gives controller acceleration when orientation is known
 - Gyroscope
 - Measures angular velocity and acceleration


Microsoft Kinect

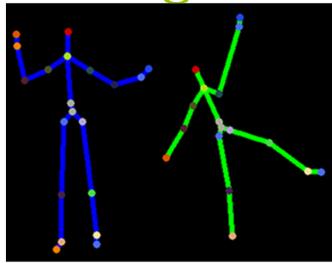
- Microsoft sold 8 million units in first 60 days on market
 - Guinness World Record for "fastest selling consumer electronics device"
- Kinect features
 - RGB camera
 - Depth sensor
 - Microphone array
 - Motorized tilt
 - Connects via USB
- Enables controller-less user interface
- Full body tracking possible
- 2 versions:
 - Xbox (~\$100)
 - Windows PC (~\$250)

Kinect - Hardware Details

- RGB Camera
 - 640 x 480 RGB pixels at 30Hz
- Depth Sensor
 - 640 x 480 monochrome pixels with 11-bit depth CMOS sensor at 30 Hz
 - Field of view: 57 ° horizontally, 43° vertically
 - Infrared laser projector
 - 4-11 feet range, down to 16 inches in near mode (Windows version only)
- Multi-array mic
 - Four microphones
 - Multi-channel echo cancellation
 - Sound position tracking
- Motorized tilt
 - 27° up or down

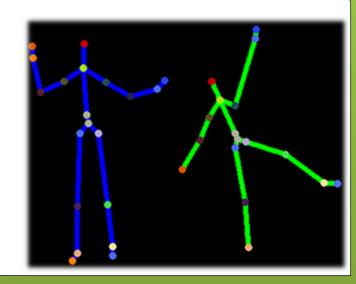
www.hardwaresphere.com

Kinect - Extracting 3D Depth


- Infrared laser projector emits known dot pattern
- CMOS sensor reads depth of all pixels
- Finds location of dots
- Computes depth information using stereo triangulation
 - Normally needs two cameras
 - Laser projector acts as second camera
- Depth image generation

Kinect - Skeleton Tracking

- Combines depth information with human body kinematics
 - 20 joint positions
- Object recognition approach
 - per pixel classification
 - decision forests (GPU)
 - millions of training samples



Kinect Programming

- Two approaches
 - Open NI and NITE
 - Microsoft Kinect SDK
- Skeleton extraction for full-body interaction

