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Overview

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates

2



Vectors

 Give direction and length in 3D
 Vectors can describe

 Difference between two 3D points
 Speed of an object
 Surface normals (directions perpendicular to surfaces)

Surface normals Surface

Normal vector
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Vector arithmetic using coordinates
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


where s is a scalar
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Vector Magnitude
 The magnitude (length) of a vector is:

 A vector with length of 1.0 is called unit vector
 We can also normalize a vector to make it a unit 

vector

 Unit vectors are often used as surface normals

v
2  vx

2  vy
2  vz

2

v  vx
2  vy

2  vz
2

v

v
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Dot Product

a b  aibi
a b  axbx  ayby  azbz

a b  a b cos
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a

b

a b  a b cos

cos 
a b
a b








  cos1
a b
a b








Angle Between Two Vectors
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area of parallelogram ab

if a and b are parallel
(or one or both degenerate)

a  b

a  b  a b sin
a  b 

a  b  0

Cross Product

is a vector perpendicular to both a
and b, in the direction defined by 
the right hand rule
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Cross Product
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Cross Product Calculation
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Matrices

 Rectangular array of numbers

 Square matrix if m = n
 In graphics almost always: m = n = 3; m = n = 4
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Matrix Addition
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Multiplication With Scalar
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Matrix Multiplication
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Matrix-Vector Multiplication
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Identity Matrix
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Matrix Inverse

If a square matrix M is non-singular, there exists a unique 
inverse M-1 such that


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Overview

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Affine Transformations

 Most important for graphics: 
 rotation, translation, scaling

 Wolfram MathWorld:
 An affine transformation is any transformation that 

preserves collinearity (i.e., all points lying on a line initially still 
lie on a line after transformation) and ratios of distances 
(e.g., the midpoint of a line segment remains the midpoint after 
transformation).

 Implemented using matrix multiplications
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Uniform Scale

 Uniform scale matrix in 2D

 Analogous in 3D:
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Non-Uniform Scale

 Nonuniform scaling matrix in 2D
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Non-Uniform Scale in 3D

 Scale in 2D:

 Analogous in 3D:
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Rotation in 2D

 Convention: positive angle rotates counterclockwise
 Rotation matrix
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Rotation in 3D

Rotation around coordinate axes
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Rotation in 3D

 Concatenation of rotations around x, y, z axes

 are called Euler angles
 Result depends on matrix order!
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Rotation about an Arbitrary Axis

 Complicated!
 Rotate point [x,y,z] about axis [u,v,w] by angle θ:
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How to rotate around a Pivot Point?

Rotation around 
origin:
p’ = R p

Rotation around 
pivot point:
p’ = ?
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Rotating point p around a pivot point

1. Translation T 2. Rotation R 3. Translation T-1
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p’ = T-1 R T p



Concatenating transformations

 Given a sequence of transformations M3M2M1

 Note: associativity applies
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Overview

 Vectors and matrices
 Affine transformations
 Homogeneous coordinates
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Translation

 Translation in 2D

 Translation matrix T=?
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ty



Translation

 Translation in 2D: 3x3 matrix

 Analogous in 3D: 4x4 matrix

32



33

Homogeneous Coordinates

 Basic: a trick to unify/simplify computations.

 Deeper: projective geometry
 Interesting mathematical properties
 Good to know, but less immediately practical
 We will use some aspect of this when we do perspective 

projection
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Homogeneous Coordinates
 Add an extra component. 1 for a point, 0 for a vector:

 Combine M and d into single 4x4 matrix:

 And see what happens when we multiply…

 

p 

px

py

pz

1



















        
r
v 
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
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Homogeneous Point Transform

 Transform a point:

 Top three rows are the affine transform!
 Bottom row stays 1

 

px

py

pz
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Homogeneous Vector Transform
 Transform a vector:

 Top three rows are the linear transform
 Displacement d is properly ignored

 Bottom row stays 0
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Homogeneous Arithmetic

 Legal operations always end in 0 or 1! 

 

vector+vector:       
M

0








 

M

0








 
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






vector-vector:       
M

0








 
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0








 
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0










scalar*vector:               s
M

0








 

M

0










point+vector:         
M
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 
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 
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
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

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M

1






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 
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 
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

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 
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 
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
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 
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

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
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
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Homogeneous Transforms
 Rotation, Scale, and Translation of points and vectors 

unified in a single matrix transformation:

 Matrix has the form:
 Last row always 0,0,0,1

 Transforms can be composed by matrix multiplication
 Same caveat: order of operations is important
 Same note: transforms operate right-to-left

mxx mxy mxz dx

myx myy myz dy

mzx mzy mzz dz

0 0 0 1



















p M p



4x4 Scale Matrix

 Generic form:

 Inverse:

భ

ೞ
భ

೟
భ

ೠ
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4x4 Rotation Matrix

 Generic form:

 Inverse:
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4x4 Translation Matrix

 Generic form:

 Inverse:
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