
CSE 167:

Introduction to Computer Graphics

Lecture #18: Shader Effects

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� TA evaluations

� CAPE

� 3rd blog entry due next Tuesday evening

� Final project presentations next Thursday 8am-11am in CSE 1202

� Bring your own laptop with your demo installed

� Bring VGA adapter if needed

� Winter:

� CSE 190 Advanced Computer Graphics with Prof. Ramamoorthi

� CSE 165 3D User Interfaces

� Independent research (CSE 199) projects in my lab: apply now

2

Lecture Overview

� Particle Systems

� Collision Detection

� Bump Mapping

� Deferred Rendering

3

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

� Galaxies

4

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

5

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

6

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

7

Demo

� Demo software by Prof. David McAllister:

� http://www.calit2.net/~jschulze/tmp/Particle221Demos.zip

8

References

� Tutorial with source code by Bartlomiej Filipek, 2014:

� http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

� Articles with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

� http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

� Founding scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� http://zach.in.tu-clausthal.de/teaching/vr_literatur/Reeves%20-%20Particle%20Systems.pdf

9

Lecture Overview

� Particle Systems

� Collision Detection

� Bump Mapping

� Deferred Rendering

10

Collision Detection

� Goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersect

� Slow calculation because of
exponential growth O(n2):

� # collision tests = n*(n-1)/2

11

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

12

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

13

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

14

References

� I-Collide:

� Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

15

Lecture Overview

� Particle Systems

� Collision Detection

� Bump Mapping

� Deferred Rendering

16

Bump Mapping

� Many textures are the result of small perturbations in the
surface geometry

� Modeling these changes would result in an explosion in
the number of geometric primitives.

� Bump mapping attempts to alter the lighting across a
polygon to provide the illusion of texture.

[This chapter includes slides by Roger Crawfis]

Bump Mapping Example

Crawfis 1991

Bump Mapping

� Consider the lighting for a modeled surface.

Bump Mapping

� We can model this as deviations from some base surface.

� The question
is then how
these deviations
change the lighting.

N

Bump Mapping

� Store in a texture and use textures to alter the
surface normal
� Does not change the shape of the surface

� Just shaded as if it were a different shape

Sphere w/Diffuse Texture
Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Simple textures work great

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

Normal Mapping

Just texture mapped

Texture and normal maps

Notice: The geometry is unchanged. There’s the same number of vertices and

triangles. This effect is entirely from the normal map.

Normal Mapping

Normal Maps

Store the normal directly in the texture.

Normal Maps

Diffuse Color Texture Map

Normal Map

Each pixel RGB values is really
a normal vector relative to the

surface at that point.

-1 to 1 range is mapped to 0 to 1 for the

texture so normals become colors.

Normal Map Operation
Vertex

Normal

Vertex

NormalNormals from

Normal Map

For each pixel, determine the normal from a texture image. Use that to

compute the color.

What's Missing?

� There are no bumps on
the silhouette of a
bump or normal-mapped object

� Displacement Mapping

Lecture Overview

� Particle Systems

� Collision Detection

� Bump Mapping

� Deferred Rendering

� Deferred Shading

� Bloom and Glow

� Screen Space Ambient Occlusion

� Computer Graphics Now and Tomorrow

29

Deferred Rendering

� Opposite to Forward Rendering, which is the way we
have rendered with OpenGL so far

� Deferred rendering describes post-processing algorithms

� Requires two-pass rendering

� First pass:

� Scene is rendered as usual by projecting 3D primitives to 2D screen
space.

� Additionally, an off-screen buffer (G-buffer) is populated with
additional information about the geometry elements at every pixel

� Examples: normals, diffuse shading color, position, texture coordinates

� Second pass:

� An algorithm, typically implemented as a shader, processes the G-
buffer to generate the final image in the back buffer

30

Deferred Shading

� Postpones shading calculations for a fragment until its
visibility is completely determined

� Only visible fragments are shaded

� Algorithm:

� Fill a set of buffers with common data, such as diffuse
texture, normals, material properties

� Render lights with limited extent and use data from the
buffers for the lighting computation

� Advantages:

� Decouples lighting from geometry rendering

� Several lights can be applied with a single draw call. E.g.,
>1000 lights can be rendered at 60 fps

� Disadvantages:

� More expensive (memory, bandwidth, shader instructions)

� Tutorial:

� http://gamedevs.org/uploads/deferred-shading-tutorial.pdf

31

Particle system with
glowing particles.

Source: Humus 3D

Lecture Overview

� Bump Mapping

� Deferred Rendering Techniques

� Deferred Shading

� Bloom and Glow

� Screen Space Ambient Occlusion

� Computer Graphics Now and Tomorrow

32

Bloom Effect

� Computer displays have limited dynamic range

� Bloom gives a scene a look of bright lighting and overexposure

� Provides visual cues about brightness and atmosphere

� Caused by light scattering in atmosphere, or within our eyes

� ss

33

Left: no bloom, right: bloom. Source: http://jmonkeyengine.org

Bloom Shader

� Step 1: Extract all highlights of the rendered
scene, superimpose them and make them
more intense

� Operates on G-buffer

� Often done with G-buffer smaller (lower
resolution) than frame buffer

� Highlights found by thresholding luminance

� Step 2: Blur off-screen buffer, e.g., using
Gaussian blur

� Step 3: Composite off-screen buffer with
back buffer

34

Bloom shader render steps.
Source: http://www.klopfenstein.net

Video

� https://www.youtube.com/watch?v=hmsMk-skquI

35

Glow vs. Bloom

� Bloom filter looks for highlights automatically, based on a
threshold value

� If you want to have more control over what glows and
does not glow, a glow filter is needed

� Glow filter adds an additional step to Bloom filter: instead
of thresholding, only the glowing objects are rendered

� Render passes:

� Render entire scene back buffer

� Render only glowing objects to a smaller off-screen glow buffer

� Apply a bloom pixel shader to glow buffer

� Compose back buffer and glow buffer together

36

Glow Shader

� Render passes:

� Render entire scene to the back
buffer

� Render only glowing objects to a
smaller off-screen glow buffer

� Apply a Gaussian blur filter to glow
buffer

� Compose back buffer and glow buffer
together

� Simple glow example:

� https://www.youtube.com/watch?v=k
DOFM9Rj5dY

37

A cityscape with and without glow.

Source: GPU Gems

References

� Bloom Tutorial

� http://prideout.net/archive/bloom/

� GPU Gems Chapter on Glow

� http://http.developer.nvidia.com/GPUGems/gpugems_ch21
.html

� GLSL Shader for Gaussian Blur

� http://www.ozone3d.net/tutorials/image_filtering_p2.php

38

Lecture Overview

� Bump Mapping

� Deferred Rendering Techniques

� Deferred Shading

� Glow

� Screen Space Ambient Occlusion

� Computer Graphics Now and Tomorrow

39

Screen Space Ambient Occlusion (SSAO)

� “Screen Space” � deferred rendering approach

� Approximates ambient occlusion in real time

� Developed by Vladimir Kajalin (Crytek)

� First use in PC game Crysis (2007)

40

SSAO component

Ambient Occlusion

� Crude approximation of global illumination

� Often referred to as "sky light"

� Global method (not local like Phong shading)

� Illumination at each point is a function of other geometry in
the scene

� Appearance is similar to what objects appear as on an
overcast day

� Assumption: concave objects are hit by less light than convex
ones

41

Basic SSAO Algorithm

� First pass:

� Render scene normally and write z values to G-buffer’s alpha channel

� Second pass:

� Pixel shader samples depth values around the processed fragment and
computes amount of occlusion, stores result in red channel

� Occlusion depends on depth difference between sampled fragment
and currently processed fragment

42

Ambient occlusion values in red color channel
Source: www.gamerendering.com

SSAO With Normals

� First pass:

� Render scene normally and copy z values to G-buffer’s alpha
channel and scene normals to RGB channels

� Second pass:

� Use normals and z-values to compute occlusion between
current pixel and several samples around that pixel

43

With SSAONo SSAO

SSAO Discussion

� Advantages:

� Deferred rendering algorithm: independent of scene complexity

� No pre-processing, no memory allocation in RAM

� Works with dynamic scenes

� Works in the same way for every pixel

� No CPU usage: executed completely on GPU

� Disadvantages:

� Local and view-dependent (dependent on adjacent texel depths)

� Hard to correctly smooth/blur out noise without interfering with depth
discontinuities, such as object edges, which should not be smoothed out

44

SSAO References

� Nvidia’s documentation

� http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc
e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

45

Wrapping Up

46

CSE Upper Division Graphics Courses

� CSE 167: Introduction to CG (this course) – Fall and Spring

� CSE 165: 3D User Interfaces (Schulze) –Winter

� CSE 190: Advanced CG (Ramamoorthi) –Winter

� CSE 168: Rendering (Wann Jensen) – Spring

� CSE 169: Animation (Rotenberg) – Spring

� Irregular: CSE 190: Shader Programming (Engel)

47

Future of Computer Graphics

� ACM SIGGRAPH Asia 2016 Technical Papers (2:53)

� https://www.youtube.com/watch?v=RvXtjANeujA

� Cryengine Licensee Trailer – GDC 2015 (2:39)

� https://www.youtube.com/watch?v=6543HUY_TwM

48

Good luck with your final projects!

49

