
CSE 167:
Introduction to Computer Graphics
Lecture #8: Visibility Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a

threshold number of pixels

2

Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place

3

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48–49

Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing

4

Backface Culling
 Convention:

Triangle is front facing if vertices are ordered
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing

5

Backface Culling
 Compute triangle normal after projection (homogeneous

division)

 Third component of n negative: front-facing, otherwise
back-facing
 Remember: projection matrix is such that homogeneous

division flips sign of third component

6

OpenGL
 OpenGL allows one- or two-sided triangles

 One-sided triangles:
glEnable(GL_CULL_FACE); glCullFace(GL_BACK)

 Two-sided triangles (no backface culling):
glDisable(GL_CULL_FACE)

7

glDisable(GL_CULL_FACE); glEnable(GL_CULL_FACE);

Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry

8

Images: SGI OpenGL Optimizer Programmer's Guide

Video
 Umbra 3 Occlusion Culling explained
 http://www.youtube.com/watch?v=5h4QgDBwQhc

9

http://www.youtube.com/watch?v=5h4QgDBwQhc

Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor

10
Size dependent mesh reduction

(Data: Stanford Armadillo)

Occlusion

Occlusion

• At each pixel, we need to
determine which triangle
is visible

12

Painter’s Algorithm
 Paint from back to front
 Need to sort geometry according to depth
 Every new pixel always paints over previous pixel in frame

buffer
 May need to split triangles if they intersect

 Intuitive, but slow algorithm
 Still used today to render translucent geometry

13

Z-Buffering
 Z-buffer stores depth (z-) value for each pixel
 Z-buffer is dedicated memory in GPU
 Algorithm:
 Create z-buffer with as many entries as pixels in render

window
 Initialize z-buffer with farthest z value
 During rasterization, compare stored value to new value
 Update pixel only if new value is smaller

setpixel(int x, int y, color c, float z)
if(z < zbuffer(x,y)) then
{ zbuffer(x,y) = z; color(x,y) = c }

 Depth test is performed by GPU  very fast
14

Z-Buffer Example

15

Displaying the Z-Buffer
 Interpret z-buffer values as luminance values
 gl_FragCoord in fragment shader contains depth value
 Output this depth value as a color:

void main() { FragColor = vec4(vec3(gl_FragCoord.z), 1.0); }

16

Z-Buffering in OpenGL
 In OpenGL applications:
 Ask for a depth buffer when you create your GLFW window.

 glfwOpenWindow(512, 512, 8, 8, 8, 0, 16, 0, GLFW_WINDOW)

 Place a call to glEnable(GL_DEPTH_TEST) in your program's
initialization routine.

 Set zNear and zFar clipping planes (glm::perspective(fovy,
aspect, zNear, zFar)) to optimize depth buffer precision: near
plane as far away as possible, far plane as close as possible
without cutting into scene

 Add GL_DEPTH_BUFFER_BIT parameter to glClear:
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 Z-buffer is non-linear: uses smaller depth bins in
foreground for greater depth resolution near viewer

17

Z-Buffer Fighting

 Problem: polygons close together don’t get rendered correctly.
Errors change with camera perspective  flicker

 Cause: differently colored fragments from different polygons
being rasterized to same pixel and depth  not clear which is
in front

 Solutions:
 Move surfaces farther apart, so that fragments rasterize into different

depth bins
 Bring near and far planes closer together
 Use a higher precision depth buffer. Note that OpenGL often defaults to

16 bit even if your graphics card supports 24 bit or 32 bit depth buffers
18

Z-buffer fighting Desired result

Translucent Geometry
 Need to depth sort translucent geometry and render

with Painter’s Algorithm (back to front)
 Problem: incorrect blending with cyclically overlapping

geometry

 Solutions:
 Back to front rendering of translucent geometry (Painter’s

Algorithm), after rendering opaque geometry
 Theoretically: need to store multiple depth and color values

per pixel (not practical in real-time graphics)

19

	CSE 167:�Introduction to Computer Graphics�Lecture #8: Visibility Culling
	Small Object Culling
	Degenerate Culling
	Backface Culling
	Backface Culling
	Backface Culling
	OpenGL
	Occlusion Culling
	Video
	Level-of-Detail Techniques
	Occlusion
	Occlusion
	Painter’s Algorithm
	Z-Buffering
	Z-Buffer Example
	Displaying the Z-Buffer
	Z-Buffering in OpenGL
	Z-Buffer Fighting
	Translucent Geometry

