
CSE 167:
Introduction to Computer Graphics
Lecture #8: Visibility Culling

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2019

Small Object Culling
 Object projects to less than a specified size
 Cull objects whose screen-space bounding box is less than a

threshold number of pixels

2

Degenerate Culling
 Degenerate triangle has no area
 Normal n=0
 All vertices in a straight line
 All vertices in the same place

3

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48–49

Backface Culling
 Consider triangles as “one-sided”, i.e., only visible from

the “front”
 Closed objects
 If the “back” of the triangle is facing away from the camera, it is

not visible
 Gain efficiency by not drawing it (culling)
 Roughly 50% of triangles in a scene are back facing

4

Backface Culling
 Convention:

Triangle is front facing if vertices are ordered
counterclockwise

p0

p1

p2

p0

p1

p2Front-facing Back-facing

5

Backface Culling
 Compute triangle normal after projection (homogeneous

division)

 Third component of n negative: front-facing, otherwise
back-facing
 Remember: projection matrix is such that homogeneous

division flips sign of third component

6

OpenGL
 OpenGL allows one- or two-sided triangles

 One-sided triangles:
glEnable(GL_CULL_FACE); glCullFace(GL_BACK)

 Two-sided triangles (no backface culling):
glDisable(GL_CULL_FACE)

7

glDisable(GL_CULL_FACE); glEnable(GL_CULL_FACE);

Occlusion Culling
 Geometry hidden behind occluder cannot be seen
 Many complex algorithms exist to identify occluded geometry

8

Images: SGI OpenGL Optimizer Programmer's Guide

Video
 Umbra 3 Occlusion Culling explained
 http://www.youtube.com/watch?v=5h4QgDBwQhc

9

http://www.youtube.com/watch?v=5h4QgDBwQhc

Level-of-Detail Techniques
 Don’t draw objects smaller than a threshold
 Small feature culling
 Popping artifacts

 Replace 3D objects by 2D impostors
 Textured planes representing the objects

 Adapt triangle count to projected size

Impostor generation

Original vs. impostor

10
Size dependent mesh reduction

(Data: Stanford Armadillo)

Occlusion

Occlusion

• At each pixel, we need to
determine which triangle
is visible

12

Painter’s Algorithm
 Paint from back to front
 Need to sort geometry according to depth
 Every new pixel always paints over previous pixel in frame

buffer
 May need to split triangles if they intersect

 Intuitive, but slow algorithm
 Still used today to render translucent geometry

13

Z-Buffering
 Z-buffer stores depth (z-) value for each pixel
 Z-buffer is dedicated memory in GPU
 Algorithm:
 Create z-buffer with as many entries as pixels in render

window
 Initialize z-buffer with farthest z value
 During rasterization, compare stored value to new value
 Update pixel only if new value is smaller

setpixel(int x, int y, color c, float z)
if(z < zbuffer(x,y)) then
{ zbuffer(x,y) = z; color(x,y) = c }

 Depth test is performed by GPU very fast
14

Z-Buffer Example

15

Displaying the Z-Buffer
 Interpret z-buffer values as luminance values
 gl_FragCoord in fragment shader contains depth value
 Output this depth value as a color:

void main() { FragColor = vec4(vec3(gl_FragCoord.z), 1.0); }

16

Z-Buffering in OpenGL
 In OpenGL applications:
 Ask for a depth buffer when you create your GLFW window.

 glfwOpenWindow(512, 512, 8, 8, 8, 0, 16, 0, GLFW_WINDOW)

 Place a call to glEnable(GL_DEPTH_TEST) in your program's
initialization routine.

 Set zNear and zFar clipping planes (glm::perspective(fovy,
aspect, zNear, zFar)) to optimize depth buffer precision: near
plane as far away as possible, far plane as close as possible
without cutting into scene

 Add GL_DEPTH_BUFFER_BIT parameter to glClear:
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 Z-buffer is non-linear: uses smaller depth bins in
foreground for greater depth resolution near viewer

17

Z-Buffer Fighting

 Problem: polygons close together don’t get rendered correctly.
Errors change with camera perspective flicker

 Cause: differently colored fragments from different polygons
being rasterized to same pixel and depth not clear which is
in front

 Solutions:
 Move surfaces farther apart, so that fragments rasterize into different

depth bins
 Bring near and far planes closer together
 Use a higher precision depth buffer. Note that OpenGL often defaults to

16 bit even if your graphics card supports 24 bit or 32 bit depth buffers
18

Z-buffer fighting Desired result

Translucent Geometry
 Need to depth sort translucent geometry and render

with Painter’s Algorithm (back to front)
 Problem: incorrect blending with cyclically overlapping

geometry

 Solutions:
 Back to front rendering of translucent geometry (Painter’s

Algorithm), after rendering opaque geometry
 Theoretically: need to store multiple depth and color values

per pixel (not practical in real-time graphics)

19

	CSE 167:�Introduction to Computer Graphics�Lecture #8: Visibility Culling
	Small Object Culling
	Degenerate Culling
	Backface Culling
	Backface Culling
	Backface Culling
	OpenGL
	Occlusion Culling
	Video
	Level-of-Detail Techniques
	Occlusion
	Occlusion
	Painter’s Algorithm
	Z-Buffering
	Z-Buffer Example
	Displaying the Z-Buffer
	Z-Buffering in OpenGL
	Z-Buffer Fighting
	Translucent Geometry

