#### CSE 190: 3D User Interaction

Lecture #8: Wayfinding Jürgen P. Schulze, Ph.D.

#### **Announcements**

- Homework assignment #2 due
  Friday, February 8<sup>th</sup> at 1pm in Sequoia lab 142
  - This time grading starts at 12 noon
  - Calit2 tour starts at 1pm
- Reminder: paper presentations
  - Next lecture:
    - Vivek
    - Joey
    - Matteo: A discussion of cybersickness in virtual environments

### Rotational Mappings

- Most covered interaction techniques deal only with selection and translation
- Many do not work well for rotations
- Rotation options:
  - Direct mapping of object rotation to rotation of device
    - Can cause clutching: repeated grabbing and releasing of object to rotate further than wrist allows
    - Tracking jitter can make small rotations difficult
  - Rotation amplification or slow-down

#### Rotation Calculations

- Simplest way to calculate rotations: Euler angles
- Euler angles define rotation by 3 rotations about coordinate axes
- Typical problem with Euler angles: Gimbal Lock, occurs in certain object orientations
  - Video (play until 1:12)
    - http://www.youtube.com/watch?v=zc8b2Jo7mno
- Better than Euler angles: 4x4 rotation matrices
  - Problem: 16 numbers required to specify rotation
- Quaternions: greatly improve rotation calculations

#### Quaternions

- OSG defines mathematical operators for quaternions to add, subtract, multiply, etc.
- In OSG, quaternions can be specified by rotation angle and axis:
  - o osg::Quat(value\_type angle, const Vec3d &axis)
- Or mathematically:
  - o osg::Quat(value\_type x, value\_type y, value\_type z, value\_type w)

#### Quaternion Definition

- [W, X, Y, Z]
  - $\circ$  w = cos(a/2)
  - $x = \sin(a/2) * nx$
  - $y = \sin(a/2) * ny$
  - $z = \sin(\alpha/2) * nz$
- o a: angle of rotation
- {nx,ny,nz}: normalized axis of rotation

# Useful Quaternions

| w         | x          | у          | z          | Description                      |
|-----------|------------|------------|------------|----------------------------------|
| 1         | 0          | 0          | 0          | Identity quaternion, no rotation |
| 0         | 1          | 0          | 0          | 180° turn around X axis          |
| 0         | 0          | 1          | 0          | 180° turn around Y axis          |
| 0         | 0          | 0          | 1          | 180° turn around Z axis          |
| sqrt(0.5) | sqrt(0.5)  | 0          | 0          | 90° rotation around X axis       |
| sqrt(0.5) | 0          | sqrt(0.5)  | 0          | 90° rotation around Y axis       |
| sqrt(0.5) | 0          | 0          | sqrt(0.5)  | 90° rotation around Z axis       |
| sqrt(0.5) | -sqrt(0.5) | 0          | 0          | -90° rotation around X axis      |
| sqrt(0.5) | 0          | -sqrt(0.5) | 0          | -90° rotation around Y axis      |
| sqrt(0.5) | 0          | 0          | -sqrt(0.5) | -90° rotation around Z axis      |

#### Quaternions: Further Reading

- Quaternions in Ogre3D:
  - http://www.ogre3d.org/tikiwiki/Quaternion+ and+Rotation+Primer
- Quaternions in OSG:
  - http://www.openscenegraph.org/projects/ osg/wiki/Support/Maths/QuaternionMaths

# Navigation

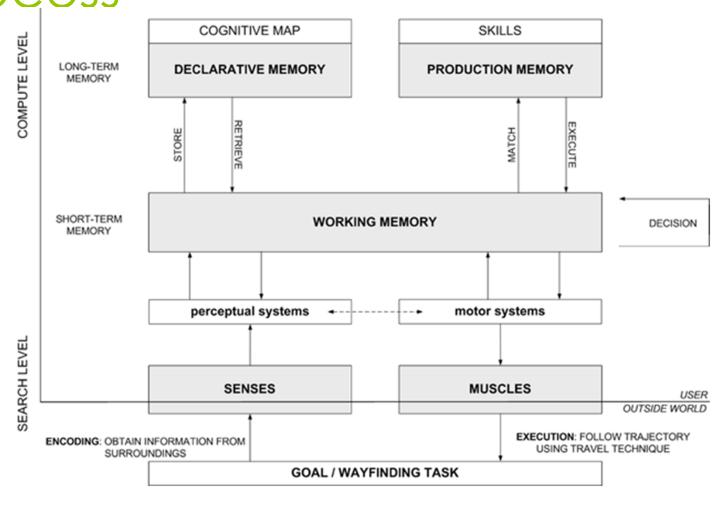
Wayfinding – Cognitive Component

## Wayfinding

- Cognitive process of defining a path through an environment
  - use and acquire spatial knowledge
  - aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (not when we are lost)

# Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information


#### Transferring Spatial Knowledge

- Want to transfer knowledge to the real world
  - training
  - planning
- Navigation through complex environments to support other tasks

### Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
  - unconstrained movement
  - absence of physical constraints
  - lack of realistic motion cues
- o 3DUIs can provide a wealth of information

# Wayfinding as Decision Making Process



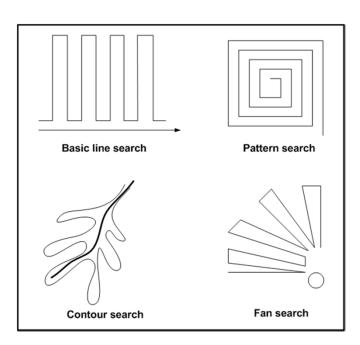
## Wayfinding and Travel

- Exploration
  - browsing environment
  - useful in building cognitive map
- Search
  - spatial knowledge acquired and used
  - o naïve search not enough info in cognitive map
  - primed search use of cognitive map defines success
- Maneuvering
  - uses very little of cognitive map

## Wayfinding and Spatial Knowledge

- Landmark knowledge
  - visual characteristics of environment
  - o shape, size, and texture
- Procedural knowledge
  - o sequence of actions required to follow a path
  - requires sparse visual information
- Survey knowledge
  - topographical knowledge
  - object location/distance/orientation

# Egocentric and Exocentric Reference Frames


- Egomotion feeling we are the center of space
- Egocentric first person
  - relative to human body
- Exocentric third person
  - relative to world
- Build up exocentric representation of world
  - survey knowledge
- Use egocentric when exploring for first time
  - landmark/procedural knowledge

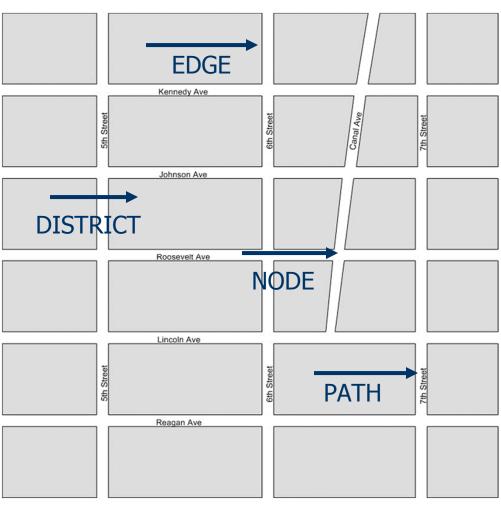
# User-Centered Wayfinding Support (1)

- Field of view
  - small FOV can inhibit wayfinding
    - user requires repetitive head movements
    - lack of optical flow in periphery
- Motion cues
  - enable judgment of depth and direction
  - supports dead reckoning (backtracking of user's own movement)
  - o cue conflicts can hinder cognitive map development
- Multisensory Output
  - audio
  - Tactile maps

# User-Centered Wayfinding Support (2)

- Presence (feeling of "being there")
  - o assumed to have impact on spatial knowledge
  - closer to real world
- Search strategies




# Environment-Centered Wayfinding Support

- Environmental design
- Artificial aids

## Environmental Design (1)

- World's structure and format can aid in wayfinding
- Legibility techniques
  - divide large scale environment into parts with distinct character
  - create simple spatial organization
  - include directional cues to support egocentric/exocentric reference frames
  - o often repetitive

# Environmental Design (2)



# Environmental Design (3)

- Natural environment
  - o horizon, atmospheric color, fog, etc...
- Architectural design
  - lighting
  - closed and open spaces
- Color and texture