CSE 167/

SSSSSSSSSSS

Announcements

- Project 2 is due next Friday

Deadline is 02:00PM Friday
You may submit to TritonEd as many times as you want before the deadline

Grading will be done in B260 and B270
Write your name and station number on the board: you will be graded FIFO

Contents

Some stuff about parsing faces
Linear algebra needed for this project
Vertex transformation

Matrix multiplication

Orbit vs spin
glm functions

Examples

Common confusion

Some stuff about parsing faces

- Indices start from 1 not O!!!
- Indices are stored as unsigned int not gim::vec3!

Linear algebra: homogenous coordinate

- (xz,yz, 2) is called a set of homogenous coordinates of (x, y)
Note that since z is nonzero, (xz, yz, z) can also be written as (x,y, 1)

- What does this mean geometrically?
Chalkboard time

- Why do we need this?
Given (x, y, z2) we can extend this to a homogenous coordinate (x, y, z, w) withw =1
This means a 3D point can be represented as a 4D vector

Then we can multiply 4 X 4 matrices and 4 X 1 vectors
So what?

Linear algebra: homogenous coordinate

Let R, be a rotation matrix with respect to the y-axis and # = 90:

cosfl 0 sin(}— 0 01
Be=| & 1 @ |=|0 18
—sinf 0 cost -1 0 0

And let T be a translation vector:

0
T= |2
3

To rotate a point A(—1,0,0) by 90 degrees and then translate by T:

A=R,-A+T
In other words,
0 0 1] |-1 0 0
Al=10 10 |6]|+]|2]=]2
=1 @ 0 0 3 4

So this is a combination of matrix multiplication AND matrix addition.

Linear algebra: homogenous coordinate

But what if you started off with 4 x 4 matrices and 4 x 1 vector in the first

place?
[cos® 0 sind 0] [o 0 1 0] 1 00 t] [1 0 0 0]
0 1 0 0 10 0 010t 01032
Ry, = and T = il k=
_sinf 0 cosh 0 1000 0 0 t, 001 3
0 0 0 1] [0 00 1 000 1| |00 0 1
And let A(—1,0,0,1). Then,
N =T Rl

In other words, using homogenous coordinate and 4 x 4 transformation matrices,

we can transform a point by just a series of matrix multiplications.

~

Linear algebra: MV P matrices

- M: place the object

- V: place the camera
- P: setup the camera
- Chalkboard time

[Model Matrix]

[View Matrix]

I

[Projection Matrix]

I

Linear algebra: matrix multiplication

- Inwhat order do we multiply?
Let’s say | have a transformation matrix M that was the result of the previous example
If | want to rotate an object with respect to the world’s y-axis, which one is right?
M =R* M?
M=M * R?
If | want to rotate an object with respect to its own y-axis again, which one is right?
M=R* M?
M=M*R?
- If you understood this part, you now know what M is actually the

“toWorld” matrix in the starter code

glm functions

- glm::translate()
- glm::rotate()
- glm::scale()

- glm::lookAt()

- glm::perspective()

Vertex transformation: matrix multiplication

Why does the order matter?

How can you tell the bunny was scaled by its coordinate system or the
world coordinate system?

Example scenario I: scale then translate
Example scenario ll: translate then scale

Vertex transformation: matrix multiplication

S=[2000 A=1]1
0100 0
0020 1
000 1] 1]

T=[1001 B =1[1
0100 0
0011 -1
000 1] 1]

Vertex transformation: matrix multiplication

Example scenario I: scale then translate

o A=S*A=[2021]
e B=S*B=[20 21]
o A'=T*A=T*S*A=[3031]
o B'=T*B=T*S*B=[30-11]

Chalkboard time!

Vertex transformation: matrix multiplication

Example scenario II: translate then scale

o A=T*A=[2021]
e B=T*B=[2001]
o A'=S*A=S* T A [4041]
e B'=S*B =S~ =[4001]

Chalkboard time!

Vertex transformation: spin vs orbit?

Step01 Step02: translation

Vertex transformation: spin vs orbit?

Step02: translation Step03: spin 90 degrees

Vertex transformation: spin vs orbit?

Step03: spin 90 degrees Step04: orbit 90 degrees?

Vertex transformation: spin vs orbit?

Step04: orbit 90 degrees scenario I? Step04: orbit 90 degrees scenario II?

Vertex transformation: spin vs orbit?

Step05: spin 90 degrees scenario I? Step05: spin 90 degrees scenario II?

Vertex transformation: spin vs orbit?

Step

01 M1 = |

02 M2=T*M1 M2=M1*T

03 M3 =Ry * M2 M3 =M2 * Ry M3 =Rz * M2 M3 =M2*Rz
04 M4 = Ry * M3 M4 = M3 * Ry M4 = Rz * M3 M4 = M3 * Rz
05 M5 =Ry * M4 M5 = M4 * Ry M5 =Rz * M4 M5 =M4 * Rz

Vertex transformation: spin vs orbit?

Step

01 M1 = |

02 M2=T*M1 M2=M1*T

03 M3 = Ry * M2 M3 = M2 * Ry M3 =Rz * M2 M3 =M2* Rz
04 M4 = Ry * M3 M4 = M3 * Ry M4 =Rz * M3 M4 = M3 * Rz
05 M5 = Ry * M4 M5 = M4 * Ry M5 = Rz * M4 M5 = M4 * Rz

Again, order matters!

glm::functions: examples

M1 =1

M2 =T%* Ml
M3 =M2 * Ry
M4 =Rz * M3

M5 =M4 * Ry

M1 = glm::mat4(1.0f)

M2 = glm::translate(glm::mat4(1.0f), gim::vec3(x, y, z)) * M1

M3 = M2 * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0))
M4 = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, O, 1)) * M3

M5 = M4 * glm::rotate(glm::mat4(1.0f), degree, vec3(0, 1, 0))

gim::functions: common confusion

What are the differences?

this->toWorld = glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z)) * this->toWorld;
this->toWorld = this->toWorld * glm::translate(glm::mat4(1.0f), gim::vec3(x, y, 2));
this->toWorld = glm::translate(this->toWorld, gim::vec3(x, y, 2));

gim::functions: common confusion

What are the differences given degree =PI /180 and total_degree =PI / 2?

this->toWorld = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));

this->toWorld = glm::rotate(glm::mat4(1.0f), degree, gim::vec3(0, 1, 0)) * this->toWorld;
this->toWorld = this->toWorld * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));

total_degree += degree; this->toWorld = glm::rotate(gim::mat4(1.0f), total_degree, glm::vec3(0, 1, 0));

glm::functions: projection and camera

glm::perspective(FOV, aspect_ratio, near, far) glm::lookAt(eye, center, up)

FOV = how much to view Eye: where is the camera

Aspect_ratio = width/height Center: where is the camera looking at
Near = nearest boundary Up: what is the camera’s y-axis

Far = farthest boundary

You should utilize these functions when writing rasterizer!!!

What values go inside FOV, aspect_ratio, near, far, eye, center, and up?

