
CSE 167
DISCUSSION 2



Announcements
- Project 2 is due next Friday

- Deadline is 02:00PM Friday
- You may submit to TritonEd as many times as you want before the deadline
- Grading will be done in B260 and B270
- Write your name and station number on the board: you will be graded FIFO



Contents
- Some stuff about parsing faces
- Linear algebra needed for this project
- Vertex transformation

- Matrix multiplication
- Orbit vs spin

- glm functions
- Examples
- Common confusion



Somestuff about parsing faces
- Indices start from 1 not 0!!!
- Indices are stored as unsigned int not glm::vec3!



Linear algebra: homogenouscoordinate
- (xz, yz, z) is called a set of homogenous coordinates of (x, y)

- Note that since z is nonzero, (xz, yz, z) can also be written as (x, y, 1)

- What does this mean geometrically?
- Chalkboard time

- Why do we need this?
- Given (x, y, z) we can extend this to a homogenous coordinate (x, y, z, w) with w = 1
- This means a 3D point can be represented as a 4D vector
- Then we can multiply 4 X 4 matrices and 4 X 1 vectors
- So what?



Linear algebra: homogenouscoordinate



Linear algebra: homogenouscoordinate



Linear algebra: MVPmatrices
- M: place the object
- V: place the camera
- P: set up the camera
- Chalkboard time

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/



Linear algebra:matrixmultiplication
- In what order do we multiply?

- Let’s say I have a transformation matrix M that was the result of the previous example
- If I want to rotate an object with respect to the world’s y-axis, which one is right?

- M = R * M?
- M = M * R?

- If I want to rotate an object with respect to its own y-axis again, which one is right?
- M = R * M?
- M = M * R?

- If you understood this part, you now know what M is actually the 
“toWorld” matrix in the starter code



glm functions
- glm::translate()
- glm::rotate()
- glm::scale()

- glm::lookAt()

- glm::perspective()



Vertex transformation: matrix multiplication
Why does the order matter?

- How can you tell the bunny was scaled by its coordinate system or the
world coordinate system?

- Example scenario I: scale then translate
- Example scenario II: translate then scale



Vertex transformation: matrix multiplication

S = [2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1]

T = [1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 1]

A = [1
0
1
1]

B = [1
0
-1
1]



Vertex transformation: matrix multiplication
Example scenario I: scale then translate

● A’= S * A = [2 0 2 1]
● B’ = S * B = [2 0 -2 1]
● A’’= T * A’= T * S * A = [3 0 3 1]
● B’’ = T * B’ = T * S * B = [3 0 -1 1]

Chalkboard time!



Vertex transformation: matrix multiplication
Example scenario II: translate then scale

● A’= T * A = [2 0 2 1]
● B’ = T * B = [2 0 0 1]
● A’’= S * A’= S * T * A = [4 0 4 1]
● B’’ = S * B’ = S * T * B = [4 0 0 1]

Chalkboard time!



Vertex transformation: spin vsorbit?
Step01 Step02: translation



Vertex transformation: spin vsorbit?
Step02: translation Step03: spin 90 degrees



Vertex transformation: spin vsorbit?
Step03: spin 90 degrees Step04: orbit 90 degrees?



Vertex transformation: spin vsorbit?
Step04: orbit 90 degrees scenario I? Step04: orbit 90 degrees scenario II?



Vertex transformation: spin vsorbit?
Step05: spin 90 degrees scenario I? Step05: spin 90 degrees scenario II?



Vertex transformation: spin vsorbit?



Vertex transformation: spin vsorbit?

Again, order matters!



glm::functions: examples

M2 = T * M1

M3 = M2 * Ry

M4 = Rz * M3

M5 = M4 * Ry

M1 = I M1 = glm::mat4(1.0f)

M2 = glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z)) * M1

M3 = M2 * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0))

M4 = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 0, 1)) * M3

M5 = M4 * glm::rotate(glm::mat4(1.0f), degree, vec3(0, 1, 0))



glm::functions: commonconfusion
What are the differences?

- this->toWorld = glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z)) * this->toWorld;
- this->toWorld = this->toWorld * glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z));
- this->toWorld = glm::translate(this->toWorld, glm::vec3(x, y, z));



glm::functions: commonconfusion

What are the differences given degree = PI /180 and total_degree = PI /2?

- this->toWorld = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));
- this->toWorld = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0)) * this->toWorld;
- this->toWorld = this->toWorld * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));
- total_degree += degree; this->toWorld = glm::rotate(glm::mat4(1.0f), total_degree, glm::vec3(0, 1, 0));



glm::functions: projection and camera

glm::perspective(FOV, aspect_ratio, near, far)

FOV = how much to view

Aspect_ratio = width/height

Near = nearest boundary

Far = farthest boundary

glm::lookAt(eye, center, up)

Eye: where is the camera

Center: where is the camera looking at 

Up: what is the camera’s y-axis

You should utilize these functions when writing rasterizer!!!

What values go inside FOV, aspect_ratio, near, far, eye, center, and up?


