CSE 167

DISCUSSION 2

Announcements

- Project 2 is due next Friday
- Deadline is 02:00PM Friday
- You may submit to TritonEd as many times as you want before the deadline
- Grading will be done in B260 and B270
- Write your name and station number on the board: you will be graded FIFO

Contents

- Some stuff about parsing faces
- Linear algebra needed for this project
- Vertex transformation
- Matrix multiplication
- Orbit vs spin
- glm functions
- Examples
- Common confusion

Some stuff about parsing faces

- Indices start from 1 not 0!!!
- Indices are stored as unsigned int not glm::vec3!

Linear algebra: homogenous coordinate

- ($x z, y z, z$) is called a set of homogenous coordinates of (x, y)
- Note that since z is nonzero, ($x z, y z, z$) can also be written as ($x, y, 1$)
- What does this mean geometrically?
- Chalkboard time
- Why do we need this?
- Given (x, y, z) we can extend this to a homogenous coordinate (x, y, z, w) with $w=1$
- This means a 3D point can be represented as a 4D vector
- Then we can multiply 4 X 4 matrices and 4 X 1 vectors
- So what?

Linear algebra: homogenous coordinate

Let R_{y} be a rotation matrix with respect to the y -axis and $\theta=90$:

$$
R_{y}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

And let T be a translation vector:

$$
T=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]
$$

To rotate a point $A(-1,0,0)$ by 90 degrees and then translate by T :

$$
A^{\prime}=R_{y} \cdot A+T
$$

In other words,

$$
A^{\prime}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]
$$

Linear algebra: homogenous coordinate

- But what if you started off with 4×4 matrices and 4×1 vector in the first place?

$$
R_{y}=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } T=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

And let $A(-1,0,0,1)$. Then,

$$
A^{\prime}=T \cdot R_{y} \cdot A
$$

In other words, using homogenous coordinate and 4×4 transformation matrices, we can transform a point by just a series of matrix multiplications.

Linear algebra: MVP matrices

- M: place the object
- V: place the camera
- P: set up the camera
- Chalkboard time

Linear algebra: matrix multiplication

- In what order do we multiply?
- Let's say I have a transformation matrix M that was the result of the previous example
- If I want to rotate an object with respect to the world's y-axis, which one is right?
- $M=R$ * M ?
- $M=M$ * R ?
- If I want to rotate an object with respect to its own y-axis again, which one is right?
- $M=R$ * M ?
- $M=M$ * R ?
- If you understood this part, you now know what M is actually the "toWorld" matrix in the starter code

glm functions

- glm::translate()
- glm::rotate()
- glm::scale()
- glm::lookAt()
- glm::perspective()

Vertex transformation: matrix multiplication

Why does the order matter?

- How can you tell the bunny was scaled by its coordinate system or the world coordinate system?
- Example scenario I: scale then translate
- Example scenario II: translate then scale

Vertex transformation: matrix multiplication

$$
\begin{aligned}
& S=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & A=[1 \\
0 & 1 & 0 & 0
\end{array}\right. \\
& \begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 1
\end{array} \\
& \left.\left.\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \quad 1\right]
\end{aligned}
$$

Vertex transformation: matrix multiplication

Example scenario I: scale then translate

- $A^{\prime}=S^{*} A=\left[\begin{array}{llll}2 & 0 & 2 & 1\end{array}\right]$
- $\mathrm{B}^{\prime}=S^{*} \mathrm{~B}=\left[\begin{array}{llll}2 & 0 & -2 & 1\end{array}\right]$
- $A^{\prime \prime}=T^{*} A^{\prime}=T * S * A=\left[\begin{array}{llll}3 & 0 & 3 & 1\end{array}\right]$
- $B^{\prime \prime}=T^{*} B^{\prime}=T^{*} S * B=\left[\begin{array}{lll}3 & 0 & -1\end{array}\right]$

Chalkboard time!

Vertex transformation: matrix multiplication

Example scenario II: translate then scale

- $A^{\prime}=T^{*} A=\left[\begin{array}{llll}2 & 0 & 2 & 1\end{array}\right]$
- $\mathrm{B}^{\prime}=\mathrm{T}^{*} \mathrm{~B}=\left[\begin{array}{llll}2 & 0 & 0 & 1\end{array}\right]$
- $A^{\prime \prime}=S * A^{\prime}=S * T * A=\left[\begin{array}{llll}4 & 0 & 4 & 1\end{array}\right]$
- $B^{\prime \prime}=S * B^{\prime}=S * T * B=\left[\begin{array}{llll}4 & 0 & 0 & 1\end{array}\right]$

Chalkboard time!

Vertex transformation: spin vs orbit?

Vertex transformation: spin vs orbit?

Step02: translation
Step03: spin 90 degrees

Vertex transformation: spin vs orbit?

Step03: spin 90 degrees
Step04: orbit 90 degrees?

Vertex transformation: spin vs orbit?

Step04: orbit 90 degrees scenario I?
Step04: orbit 90 degrees scenario II?

Vertex transformation: spin vs orbit?

Step05: spin 90 degrees scenario I?
Step05: spin 90 degrees scenario II?

Vertex transformation: spin vs orbit?

Step				
01	$M 1=1$			
02	$M 2=T^{*} M 1$	$M 2=M 1$ * T		
03	$M 3=R y * M 2$	$M 3=M 2$ * $R y$	$M 3=R z^{*} M 2$	$M 3=M 2$ *Rz
04	$M 4=R y$ * $M 3$	$M 4=M 3$ * $R y$	$M 4=R z^{*} M 3$	$M 4=M 3$ *Rz
05	$M 5=R y$ *M4	$M 5=M 4$ * $R y$	$M 5=R z^{*} M 4$	$M 5=M 4$ *Rz

Vertex transformation: spin vs orbit?

Step				
01	$\mathrm{M} 1=1$			
02	$\mathrm{M} 2=\mathrm{T}^{*} \mathrm{M} 1$	$\mathrm{M} 2=\mathrm{M} 1{ }^{*} \mathrm{~T}$		
03	$\mathrm{M} 3=\mathrm{Ry}$ * M2	$\mathrm{M} 3=\mathrm{M} 2$ * Ry	$\mathrm{M} 3=\mathrm{Rz}$ * M 2	$\mathrm{M} 3=\mathrm{M} 2$ * Rz
04	$\mathrm{M} 4=\mathrm{Ry}$ * M3	M4 = M3 * Ry	$\mathrm{M} 4=\mathrm{Rz}$ * M3	$\mathrm{M} 4=\mathrm{M} 3$ * Rz
05	$\mathrm{M} 5=\mathrm{Ry}$ * M4	M5 = M 4 * Ry	$\mathrm{M} 5=\mathrm{Rz}$ * M4	$\mathrm{M} 5=\mathrm{M} 4{ }^{*} \mathrm{Rz}$

Again, order matters!

glm::functions: examples

```
M1 = I
M2 = T* M1
M3 = M2 * Ry
M4 = Rz * M3
M5 = M4 * Ry
```

M1 = glm::mat4(1.0f)
M2 = glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z)) * M1
M3 = M2 * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0))
M4 = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 0, 1)) * M3
M5 = M4 * glm::rotate(glm::mat4(1.0f), degree, vec3(0, 1, 0))

glm::functions: common confusion

What are the differences?

- this->toWorld = glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z)) * this->toWorld;
- this->toWorld = this->toWorld * glm::translate(glm::mat4(1.0f), glm::vec3(x, y, z));
- this->toWorld = glm::translate(this->toWorld, glm::vec3(x, y, z));

glm::functions: common confusion

What are the differences given degree $=\mathrm{PI} / 180$ and total_degree $=\mathrm{PI} / 2$?

- this->toWorld = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));
- this->toWorld = glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0)) * this->toWorld;
- this->toWorld = this->toWorld * glm::rotate(glm::mat4(1.0f), degree, glm::vec3(0, 1, 0));
- total_degree += degree; this->toWorld = glm::rotate(glm::mat4(1.0f), total_degree, glm::vec3(0, 1, 0));

glm::functions: projection and camera

glm::perspective(FOV, aspect_ratio, near, far)
FOV = how much to view

Aspect_ratio = width/height
Near = nearest boundary
Far = farthest boundary
glm::lookAt(eye, center, up)
Eye: where is the camera

Center: where is the camera looking at
Up: what is the camera's y-axis

You should utilize these functions when writing rasterizer!!!
What values go inside FOV, aspect_ratio, near, far, eye, center, and up?

