CSE 167: Introduction to Computer Graphics Lecture #4: Projection Part 2

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014

Announcements

- Project I due Friday, 10/17 at 3:30pm
- Presentations start at 3:30pm in labs 260 and 270
- Weekly office hours:

Jurgen Schulze: Tue 3:30-4:30pm

Dylan McCarthy: Tue 5-9pm + Thu 11-1pm + Thu 8-10pm

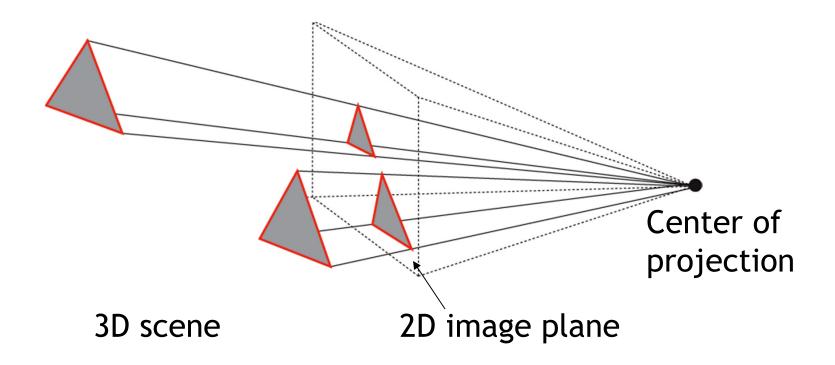
Krishna Mullia: Tue 5-9pm + Thu 11-1pm + Thu 8-10pm

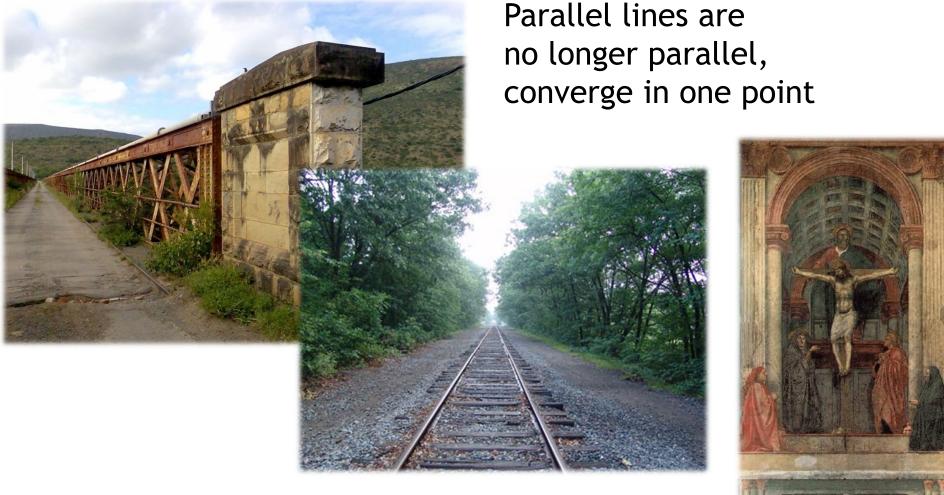
Phillip Ho: Tue 5-8pm

Max Takano: Wed 4-5:30pm + Thu 3:30-6pm

▶ Rex West: Fri 9-11am + 1-2pm

Project along rays that converge in center of projection





Earliest example:

La Trinitá (1427) by Masaccio

Video

- UCSD Professor Ravi Ramamoorthi on Perspective Projection
 - http://www.youtube.com/watch?v=VpNJbvZhNCQ

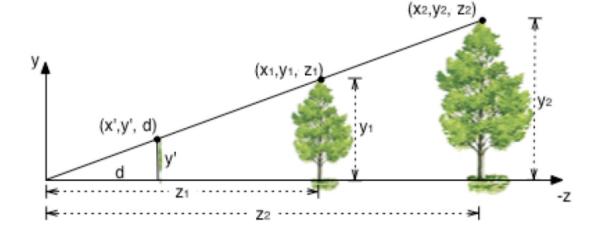
From law of ratios in similar triangles follows:

$$\frac{y'}{d} = \frac{y_1}{z_1} \Rightarrow y' = \frac{y_1 d}{z_1}$$
Similarly:
$$x' = \frac{x_1 d}{z_1}$$
Image plane

By definition: z' = d

 We can express this using homogeneous coordinates and 4x4 matrices as follows

$$x' = \frac{x_1 d}{z_1}$$
$$y' = \frac{y_1 d}{z_1}$$



$$z' = d$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} xd/z \\ yd/z \\ d \end{bmatrix}$$

Projection matrix Homogeneous division

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} xd/z \\ yd/z \\ d \\ 1 \end{bmatrix}$$

Projection matrix P

- Using projection matrix, homogeneous division seems more complicated than just multiplying all coordinates by d/z, so why do it?
- It will allow us to:
 - Handle different types of projections in a unified way
 - Define arbitrary view volumes

Lecture Overview

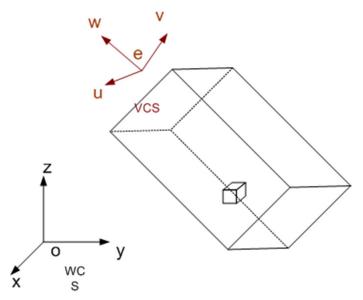
- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

View Volumes

View volume = 3D volume seen by camera

Orthographic view volume

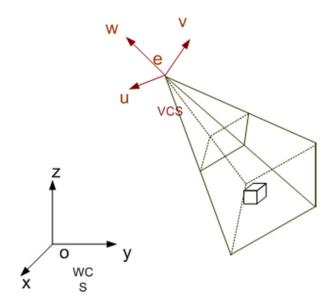
Camera coordinates



World coordinates

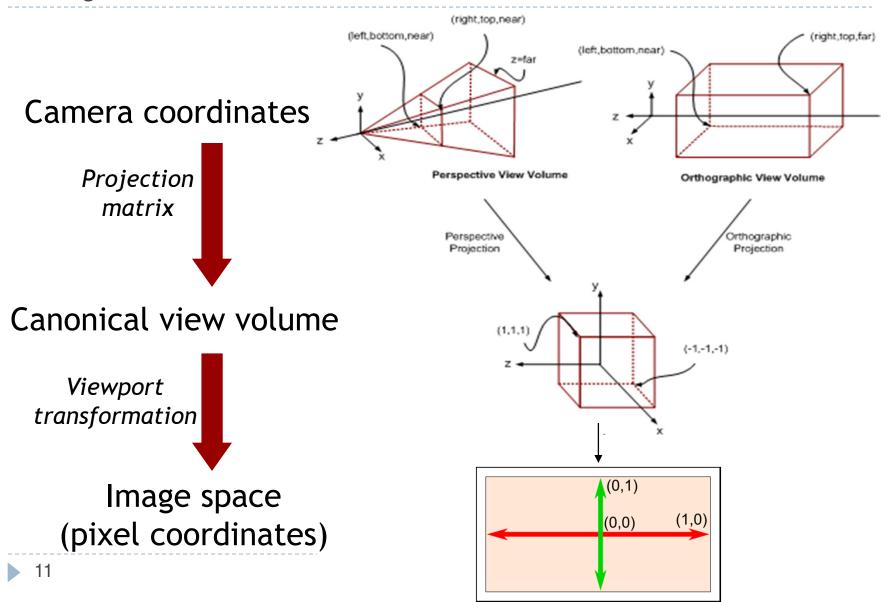
Perspective view volume

Camera coordinates

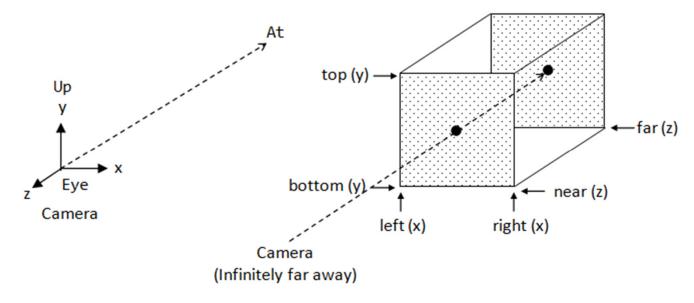


World coordinates

Projection Matrix

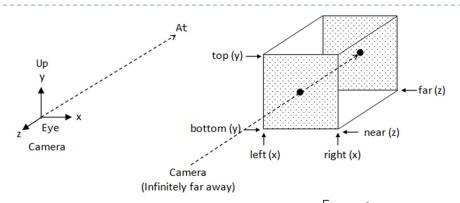


Orthographic View Volume



- Specified by 6 parameters:
 - Right, left, top, bottom, near, far
- Or, if symmetrical:
 - Width, height, near, far

Orthographic Projection Matrix



 $\mathbf{P}_{ortho}(right, left, top, bottom, near, far) =$

In OpenGL:

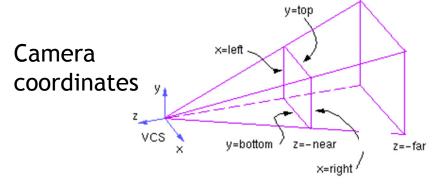
glOrtho(left, right, bottom, top, near, far)

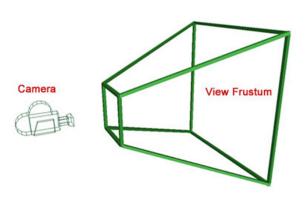
$$\begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P}_{ortho}(width, height, near, far) = \begin{bmatrix} \frac{2}{width} & 0 & 0 & 0 \\ 0 & \frac{2}{height} & 0 & 0 \\ 0 & 0 & \frac{2}{height} & 0 & 0 \\ 0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

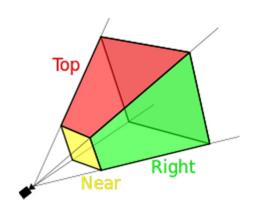
Perspective View Volume

General view volume



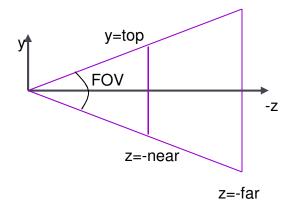


- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom



Perspective View Volume

Symmetrical view volume



Only 4 parameters

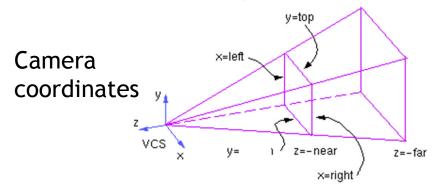
- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

aspect ratio=
$$\frac{right - left}{top - bottom} = \frac{right}{top}$$

$$\tan(FOV/2) = \frac{top}{near}$$

Perspective Projection Matrix

General view frustum with 6 parameters



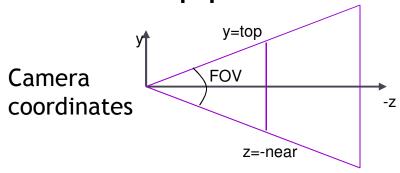
 $\mathbf{P}_{persp}(left, right, top, bottom, near, far) =$

$$\begin{bmatrix} \frac{2near}{right-left} & 0 & \frac{right+left}{right-left} & 0 \\ 0 & \frac{2near}{top-bottom} & \frac{top+bottom}{top-bottom} & 0 \\ 0 & 0 & \frac{-(far+near)}{far-near} & \frac{-2far\cdot near}{far-near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL: glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

 Symmetrical view frustum with field of view, aspect ratio, near and far clip planes



$$\mathbf{P}_{persp}(FOV, aspect, near, far) = \begin{bmatrix} \frac{1}{aspect \cdot \tan(FOV/2)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(FOV/2)} & 0 & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2 \cdot near \cdot far}{near - far} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

In OpenGL:

gluPerspective(fov, aspect, near, far)

Canonical View Volume

- ▶ Goal: create projection matrix so that
 - User defined view volume is transformed into canonical view volume: cube [-1,1]x[-1,1]x[-1,1]
 - Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
 - Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
 - ▶ Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
 - Range depends on window (view port) size: [x0...x1] x [y0...y1]
- Scale and translation required:

$$\mathbf{D}(x_0, x_1, y_0, y_1) = \begin{bmatrix} (x_1 - x_0)/2 & 0 & 0 & (x_0 + x_1)/2 \\ 0 & (y_1 - y_0)/2 & 0 & (y_0 + y_1)/2 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{M}\mathbf{p}$$
 Object space

- ▶ M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1} \mathbf{M} \mathbf{p}$$
Object space
World space

- ▶ **M**: Object-to-world matrix
- ▶ **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p'} = \mathbf{DP} \mathbf{C}^{-1} \mathbf{Mp}$$
Object space
World space
Camera space

- ▶ **M**: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$$
Object space
World space
Camera space
Canonical view volume

- ▶ M: Object-to-world matrix
- C: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Mapping a 3D point in object coordinates to pixel coordinates: $\mathbf{p}' = \mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}$

DPC⁻¹Mp
Object space
World space
Camera space
Canonical view volume

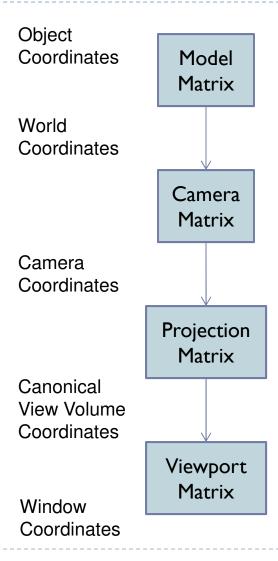
Image space

- ▶ M: Object-to-world matrix
- ▶ **C**: camera matrix
- ▶ **P**: projection matrix
- **D**: viewport matrix

$$\mathbf{p}' = \mathbf{DPC}^{-1}\mathbf{Mp}$$

$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} \qquad \text{Pixel coordinates:} \quad \frac{x'/w'}{y'/w'}$$

- ▶ M: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix



Complete Vertex Transformation in OpenGL

OpenGL GL_MODELVIEW matrix
$$\mathbf{p}' = \mathbf{D} \frac{\mathbf{P} \mathbf{C}^{-1} \mathbf{M} \mathbf{p}}{\mathbf{OpenGL GL_PROJECTION matrix}}$$

- ▶ **M**: Object-to-world matrix
- **C**: camera matrix
- **P**: projection matrix
- **D**: viewport matrix

Complete Vertex Transformation in OpenGL

▶ GL_MODELVIEW, C-¹M

- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.

▶ GL_PROJECTION, **P**

- Utility routines to set it by specifying view volume: glFrustum(), gluPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.

Viewport, D

- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

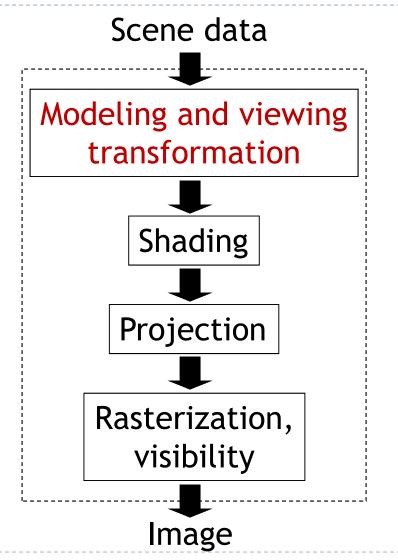
Scene data

- Hardware and software which draws 3D scenes on the screen
- Consists of several stages
 - Simplified version here
- Most operations performed by specialized hardware (GPU)
- Access to hardware through low-level 3D API (OpenGL, DirectX)
- All scene data flows through the pipeline at least once for each frame

Scene data Modeling and viewing transformation Shading Projection Rasterization, visibility **Image**

- Textures, lights, etc.
- Geometry
 - Vertices and how they are connected
 - Triangles, lines, points, triangle strips
 - Attributes such as color

- Specified in object coordinates
- Processed by the rendering pipeline one-by-one

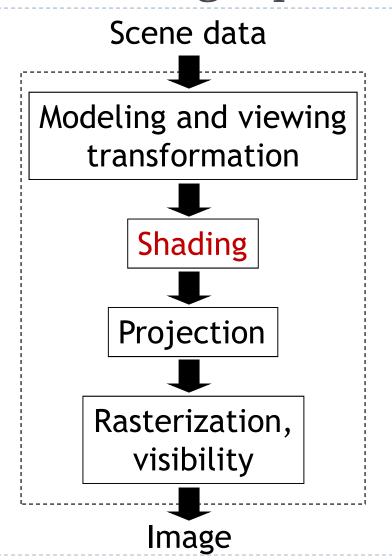


- Transform object to camera coordinates
- Specified by GL_MODELVIEW matrix in OpenGL
- User computes
 GL_MODELVIEW matrix
 as discussed

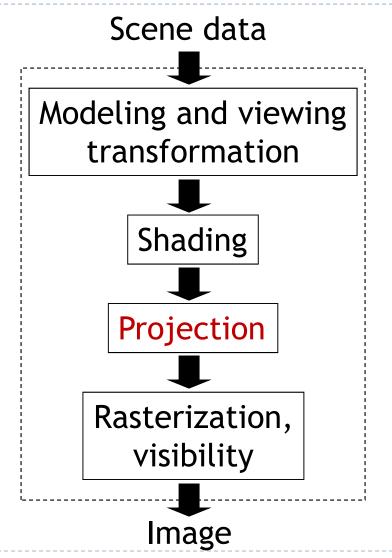
$$\mathbf{p}_{camera} = \mathbf{C}^{-1} \mathbf{M} \mathbf{p}_{object}$$

MODELVIEW

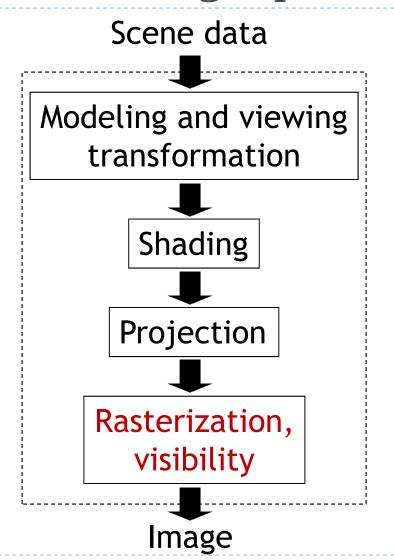
matrix



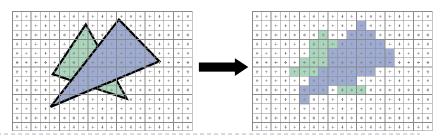
- Look up light sources
- Compute color for each vertex



- Project 3D vertices to 2D image positions
- ▶ GL_PROJECTION matrix



- Draw primitives (triangles, lines, etc.)
- Determine what is visible



Rendering Pipeline

Scene data Modeling and viewing transformation Shading Projection Rasterization, visibility **Image**

Pixel colors

Rendering Engine

Scene data Rendering pipeline **Image**

Rendering Engine:

- Additional software layer encapsulating low-level API
- Higher level functionality than OpenGL
- Platform independent
- Layered software architecture common in industry
 - Game engines
 - Graphics middleware

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline
- Culling

Culling

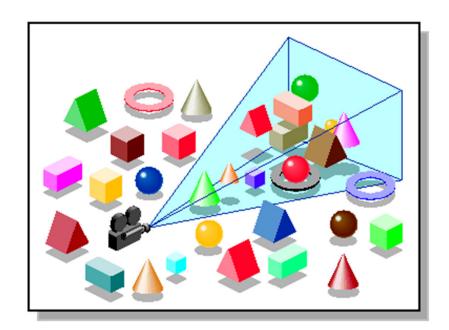
▶ Goal:

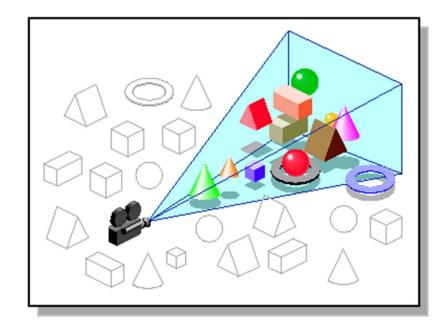
Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
 - View frustum culling
 - Occlusion culling
 - Small object culling
 - Backface culling
 - Degenerate culling

View Frustum Culling

- ▶ Triangles outside of view frustum are off-screen
 - Done on canonical view volume





Images: SGI OpenGL Optimizer Programmer's Guide

Videos

- Rendering Optimizations Frustum Culling
 - http://www.youtube.com/watch?v=kvVHp9wMAO8
- View Frustum Culling Demo
 - http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Box

- How to cull objects consisting of may polygons?
- Cull bounding box
 - Rectangular box, parallel to object space coordinate planes
 - Box is smallest box containing the entire object

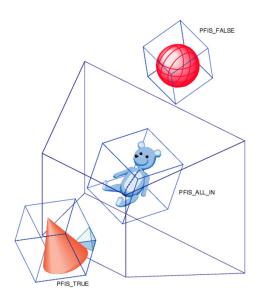
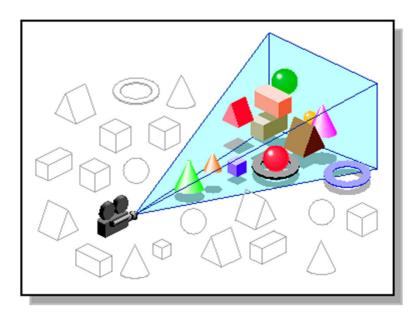
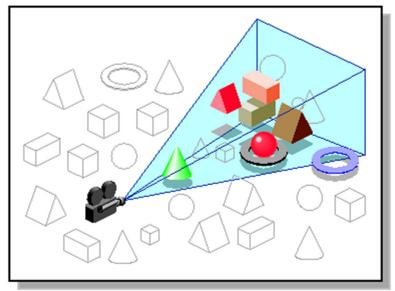


Image: SGI OpenGL Optimizer Programmer's Guide

Occlusion Culling

- Geometry hidden behind occluder cannot be seen
 - Many complex algorithms exist to identify occluded geometry





Images: SGI OpenGL Optimizer Programmer's Guide

Video

- Umbra 3 Occlusion Culling explained
 - http://www.youtube.com/watch?v=5h4QgDBwQhc

Small Object Culling

- Object projects to less than a specified size
 - Cull objects whose screen-space bounding box is less than a threshold number of pixels

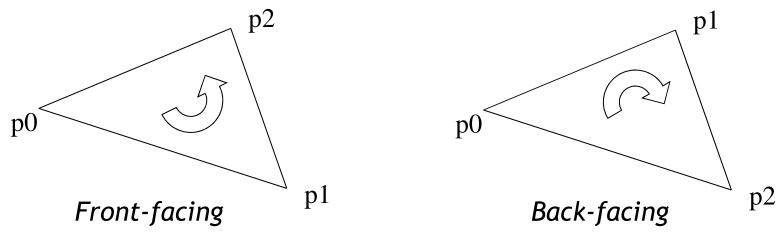
Backface Culling

- Consider triangles as "one-sided", i.e., only visible from the "front"
- Closed objects
 - If the "back" of the triangle is facing the camera, it is not visible
 - Gain efficiency by not drawing it (culling)
 - Roughly 50% of triangles in a scene are back facing

Backface Culling

Convention:

Triangle is front facing if vertices are ordered counterclockwise



- OpenGL allows one- or two-sided triangles
 - One-sided triangles: glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
 - Two-sided triangles (no backface culling): glDisable(GL_CULL_FACE)

Backface Culling

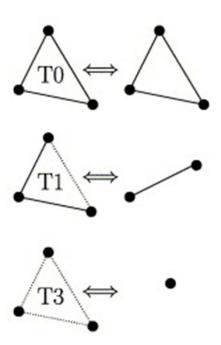
Compute triangle normal after projection (homogeneous division)

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$

- ▶ Third component of **n** negative: front-facing, otherwise back-facing
 - Remember: projection matrix is such that homogeneous division flips sign of third component

Degenerate Culling

- Degenerate triangle has no area
 - Vertices lie in a straight line
 - Vertices at the exact same place
 - ► Normal n=0



Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 48–49

Rendering Pipeline

Primitives Modeling and Viewing **Transformation** Shading **Projection** Scan conversion, visibility **Image**

Culling, Clipping

 Discard geometry that will not be visible

