CSE 190: Virtual Reality Technologies

LECTURE \#4: HUMAN VISUAL SYSTEM

Upcoming Deadlines

Sunday April 11: Deadline for presentation date selection on wiki
Monday April 12: Discussion Project 1
Sunday April 18: Project 1 due

App Presentations

Weijia Zeng

- Virtual Virtual Reality

Tobey Pineda

- Beat Saber

Color Spaces

Color Realism

To create compelling virtual worlds we need to render realistic colors.

- Even more important for augmented reality

How to measure color realism?

- On right: chromaticity diagram of typical HD TV gamut

Goal: understand chromaticity diagrams

Color Perception

Color Reproduction

How can we store and reproduce colors of objects?

- Naïve approach: store full spectrum

Goal: representation should be as compact as possible

- Requirement: any two colors that can be distinguished by humans should have different representations
- Observation: any two different colors that cannot be distinguished by humans can have the same representation

Anatomy of the Human Eye

Retina Visualization in VR

\square

Cones and Rods

5 arcmin visual angle

Photoreceptors: 3 types of cones (color vision), rods (luminance only, night vision)

Layers of the Retina

Color Representation

Goal: create minimal set of parameters describing a color sensation.
\rightarrow "Coordinate system" for colors

Three types of cones (L,M,S)
\rightarrow we expect three parameters to be sufficient (Trichromatic Theory!)

Idea: use L,M,S cone responses!

Tristimulus Experiment

Given arbitrary color, we want to know the weights for the three primaries
\rightarrow tristimulus values

Experimental solution

- First done by CIE (International Commission on Illumination) ca. 1920

Tristimulus Experiment

Figure 1-10

The observer adjusts the intensities of the red, green, and blue lamps until they match the target stimulus on the split screen.

Tristimulus Experiment

Spectral primary colors were chosen as: blue (435.8nm), green (546.1nm), red (700nm)
Example for target color wavelength of 580 nm

Tristimulus Experiment

Matching curves for monochromatic target as measured:

Negative Values

Some spectral colors could not be matched by primaries in the experiment
"Trick"

- One primary could be added to the source (stimulus)
- Match with the other two
- Weight of primary added to the source is considered negative

CIE Color Spaces

Matching curves $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$ define CIE RGB color space

- CIE RGB values are color "coordinates"

CIE was not satisfied with range of RGB values for visible colors
Defined CIE XYZ color space

- Most commonly used color space today

CIE XYZ Color Space

Determined coefficients such that

- Y corresponds to an experimentally determined brightness
- No negative values in matching curves
- White is $\mathrm{XYZ}=(1 / 3,1 / 3,1 / 3)$

Conversion from CIE RGB to CIE XYZ:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\frac{1}{b_{21}}\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=\frac{1}{0.17697}\left[\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

CIE XYZ Color Space

Matching curves

No corresponding physical primaries

Tristimulus values
Always positive!

$$
\begin{aligned}
X & =\int \bar{x}(\lambda) L(\lambda) d \lambda \\
Y & =\int \bar{y}(\lambda) L(\lambda) d \lambda \\
Z & =\int \bar{z}(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

3D CIE XYZ Color Space

Visualization

Interpret XYZ as 3D coordinates, plot corresponding color at each point

Many XYZ values are outside of visible color space

Chromaticity Diagrams

Chromaticity Diagram

Project from CIE XYZ coordinates to 2D for more convenient visualization:

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z_{z}} \\
& \text { Drop z-coordinate }
\end{aligned}
$$

Chromaticity Diagram

Factor out luminance (perceived brightness) and chromaticity (hue)

- x, y represent chromaticity of a color

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad 0 \leq x, y \leq 1
$$

- Y is luminance

CIE xyY color space
Reconstruct XYZ values from xyY

$$
X=\frac{Y}{y} x \quad Z=\frac{Y}{y}(1-x-y)
$$

Chromaticity Diagram

Visualizes x, y plane (chromaticities)
Pure spectral colors on boundary

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

Weighted sum of any two colors lies on line connecting the colors

Colors shown do not correspond to colors represented by (x, y) coordinates!

Chromaticity Diagram

Weighted sum of any number of colors lies in convex hull of colors (gamut)

Colors shown do not correspond to colors represented by (x, y) coordinates!

Color Gamut

Any device based on three primaries can only produce colors within the triangle spanned by the primaries.

Points outside gamut correspond to negative weights of primaries.

Gamut of CIE RGB primaries

Gamut of typical HD TV

Display Gamut

Given red, green, blue (RBG) values, what color will your monitor produce?

- I.e., what are the CIE XYZ or CIE RGB coordinates of the displayed color?
- How are OpenGL RGB values related to CIE XYZ, CIE RGB?

Often there's no way to know!

sRGB

Standard color space, with fixed conversion to CIE XYZ.

Designed to match RGB values of typical monitor under typical viewing conditions (dimly lit office)

- If no calibration information available, best to interpret RGB values as sRGB
sRGB roughly corresponds to 2.2 gamma correction.
sRGB is supported by OpenGL as
- sRGB framebuffers (since OpenGL 3.0)

sRGB color gamut

Color Calibration

The same RGB values on one monitor will look different than on another

\rightarrow Color calibration

Standard for digital publishing, printing, photography.

Will become critical for photo-realistic AR.
But: not important to most consumers as long

Display Calibration as colors on screen do not have to match any others.

Human Visual

System

Overview

Color Representation
Field of View
Spatial Resolution
Temporal Resolution
Dynamic Range
Accommodation Range

Colors

How many colors can the human eye distinguish?

About 10 million
But not evenly distributed in red, green and blue

32 bits can store 2 billion colors
$\rightarrow 32$ bits storage per pixel

Field of View

Binocular visual field

Horizontal field of view: $\sim 145^{\circ}$ per eye
Vertical field of view: $\sim 135^{\circ}$

Spatial Resolution

~150 pixels/degree in center of field of view

Less towards edge

Retina VR Display

- Resolution per eye:
- $145^{\circ} \times 135^{\circ}$ field of view at 150 pixels/degree resolution
$\rightarrow 21,750 \times 20,250$ pixels $=440 \mathrm{Mpixels}$
- For two eyes (stereoscopic vision):
- 2×440 Mpixels $=880$ Mpixels

Temporal Resolution

~60-150 Hz (varies with brightness)

Dynamic Range

100:1 (retina), 1 billion:1 (with iris)

Accommodation Range

Age dependent
An 'average eye' likes to have things 25 cm away, or farther, for comfortable vision.

Young children can accommodate down to about 7 cm .

Summary

- Colors: 32 bits per pixel
- Horizontal field of view: ${ }^{\sim} 145^{\circ}$ per eye
- Vertical field of view: ~135 ${ }^{\circ}$
- Pixel resolution: 150 pixels/degree
- Stereoscopic vision
- Temporal resolution: ~60-150 Hz (varies with brightness)
- Dynamic range: 100:1 (retina), 1 billion:1 (with iris)
- Accommodation range: ~7cm to infinity

