CSE 165: 3D User Interaction

Lecture 6: Wayfinding

Announcements

Sunday, January 24th at 11:59pm:
Homework Project 1 due
Sunday, January 31st at 11:59pm:
Late deadline for project 1
Sunday, February 7th at 11:59pm:
Homework project 2 due

3D UI Presentations

• Patrick Pajarillaga

- VR in focus: The first foveated light-field Virtual Reality experience by CREAL
- Dayyan Sisson
 - 360 VR Design in Adobe Xd | DraftXR | Design Weekly

Navigation

Navigation = Wayfinding + Travel
 Wayfinding: Cognitive Component
 Travel: Motor Component

Today's Focus: Wayfinding

- Cognitive process of defining a path through an environment
 - o use and acquire spatial knowledge
 - aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (except when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information

Wayfinding in Virtual Worlds

- Issues with wayfinding in virtual world compared to real world:
 - Less constrained movement
 - 6 DOF possible
 - Absence of physical constraints
 - No fundamental limitations by vehicle or environment
 - Lack of physical motion cues
 - User's motion in physical space does not match motion in virtual space

Wayfinding in Virtual Worlds

- Advantages of wayfinding in virtual worlds:
 - Potential to provide much more information
 - Distractions have less severe consequences

Objectives for Wayfinding

- Exploration
 - browse environment
 - o useful to build cognitive map
- •Search
 - spatial knowledge acquired and used
 - naïve search not enough info in cognitive map
 - primed search use of cognitive map

Useful Spatial Knowledge

- Landmark knowledge
 - visual characteristics of environment
 - shape, size, texture
 - relative positioning
- Procedural knowledge
 - sequence of actions required to follow a path (eg, turn by turn directions)
 - requires only sparse visual information
- Survey knowledge
 - o maps
 - topographical knowledge

Egocentric and Exocentric Reference Frames

• Egocentric – first person

- viewpoint in reference frame of human body
- Exocentric third person
 - viewpoint in reference frame of world
- We use egocentric when exploring for first time
 - creates landmark/procedural knowledge
- Repeated wayfinding builds up exocentric representation of world
 - creates survey knowledge

User-Centered Wayfinding Support

Large field of view desirable small FOV can inhibit wayfinding especially with HMDs user requires repetitive head movements lack of optical flow in periphery Motion cues

- o enable judgment of depth and direction
- supports backtracking of user's own movement
- cue conflicts (physical vs. virtual) can hinder cognitive map development

User-Centered Wayfinding Support

Presence (feeling of "being there")
assumed to have impact on spatial knowledge
Search strategies

Environment-Centered Wayfinding Support

Environmental designArtificial aids

Environmental Design

 World's structure and format can aid in wayfinding

Legibility techniques

- divide large scale environment into parts with distinct character
- create simple spatial organization
- include directional cues to support egocentric/exocentric reference frames
- often repetitive

Environmental Design

• Natural environment

- horizon, atmospheric color, fog, etc.
- Architectural design

• lighting

- closed and open spaces
- Color and texture

Artificial Cues

- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Paths

Maps

Parameters

- Location and size on screen
- Current location and destination
- Scale level: e.g., 1:1000
- Level of detail
 - Types of information: roads, buildings, moving objects, etc.
 - Map density
- Orientation (north up, forward up, 3D)
- Abstraction level
 - Stylized vs photorealistic

North Up vs. Forward Up

Example

Compass

Signs

Dynamic Signs

Reference Objects

Objects that have well known size
o chair, human figure, etc.
Useful to estimate distances

Artificial Landmarks

 Local – help users in decision making processes

• Global – seen from any location

Path Visualization

Display of continuous path to destination
Useful in VR, but even more in AR

