CSE 190: 3D User Interaction

Lecture #17: 3D UI Evaluation Jürgen P. Schulze, Ph.D.

Announcements

- Final Exam
 - Tuesday, March 19th, 11:30am-2:30pm, CSE 2154
- Sid's office hours in lab 260 this week
- CAPE
- Please return webcams, Hydras, Kinects

Paper Presentation Today

 Joey: Predator-prey vision metaphor for multi-tasking virtual environments

Final Exam

o Date: Tuesday, March 19th

o Time: 11:30am - 2:30pm

Location: CSE 2154

Final Exam - Permitted

- Pen/pencil(s)
- Eraser/ink corrector
- Pencil sharpener
- Ruler
- Blank scrap paper

Final Exam - Not Permitted

- Cell phone (switch off)
- Other electronic devices, incl. calculator
- Books
- Lecture notes
- Cheat sheets

Final Exam - Material

- You should review:
 - Lecture slides
 - What you learned by doing the homework assignments
- You do not need to study:
 - Textbook contents not covered in class
 - Research paper presentations

Final Exam - Tips

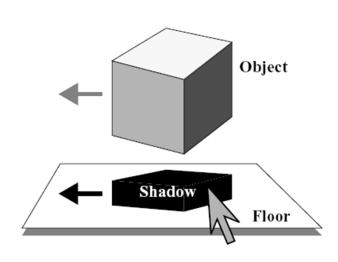
- Similar to exams in CSE 167
- Example:
 - http://ivl.calit2.net/wiki/images/1/14/Final-fall2011.pdf
- Understand the slides
 - Use textbook as reference
 - Ask Sid in office hour
- 3D UI design task(s) possible
- No C++/OSG/OpenGL code
- Pseudocode possible

Remaining 3D UI Design Strategies

3DUI Design Strategies

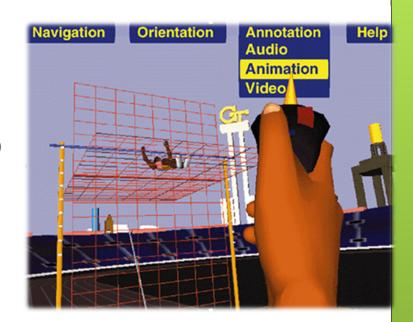
- Designing for humans
 - Match design to human strengths
- Inventing 3D interaction techniques
 - Creative exploration of 3D Uls

Inventing 3D User Interfaces


- Realism (or isomorphism)
 - Borrowing from real world
- Magic (or non-isomorphism)
 - Deviating from the real world and introducing artificial, magic techniques
- Continuum between realism and magic

Inventing 3DUIs – Simulating Reality

- Tried and true approach
 - replicate world as close as possible
 - bring in certain elements
- Important for simulation applications
 - flight simulators
 - medical training
 - phobia treatment
- Dependent on application
- Advantages
 - User already knows how to do it from everyday experience
 - Can be implemented on the basis of designer intuition
- Disadvantages
 - Limitations of technology do not allow exact realism
 - Introduces limitations of the physical world into the virtual world


Inventing 3DUIs – Adopting from the Real World

- Adopt artifacts, ideas, philosophies, domains
- Architecture and movies
- Real-world metaphors
- Examples
 - o virtual vehicle
 - flashlight
 - shadows

Inventing 3DUIs – Adapting from 2D

- 2D UIs studied extensively
- Most people fluent with 2D interaction
- Can be easier than 3D
- Approaches
 - 2D overlay
 - Elements in 3D environment
 - 2D interaction with 3D objects
 - Ul on separate device, e.g., lpad

Inventing 3DUIs – Magic and Aesthetics

- Real power of 3DUIs
 - better reality
 - alternate reality
- Overcome human limitations
- Reduces effects of technological limitations

http://www.cantonmagicrafters.com/images/rabbit.jpg

Magic: Cultural Clichés & Metaphors

- Examples: Flying carpet, Go-Go, WIM
- Advantages:
 - easy to understand if you know the metaphor
 - usually they are very enjoyable
 - many metaphors are available
 - need not to be learned

• Disadvantages:

- the metaphors can be misleading
- the metaphors are often rooted in culture
- it is difficult to come up with good magic metaphor

3D UI Evaluation

Why User Evaluation?

- Need to compare
 - devices
 - interaction techniques
 - Applications
- Problem identification and redesign
- General usability understanding

Some Terminology

- Usability everything about an artifact and what affects a person's use of an artifact
- Evaluator person who designs, administers, implements, or analyzes an evaluation
- Subject person who takes part in the evaluation

Evaluation Tools

- User task analysis
 - generates list of detailed task descriptions, sequences, user work, and information flow
- Scenarios
 - built from task analysis
 - important for experiment design
- Taxonomy
 - science of classification
 - break down techniques into components
 - used in evaluation process
- Prototyping
 - need to have something to test
 - paper-based sketches
 - Wizard of Oz approach

Evaluation Methods

- Cognitive walkthrough
- Heuristic evaluation
- Formative evaluation
 - observational user studies
 - questionnaires, interviews
- Summative evaluation
 - task-based usability evaluation
 - formal experimentation
- Questionnaires
- Interviews and Demos

Evaluation Metrics – System Performance

- System performance metrics
- Average frame rate (fps)
- Average latency / lag (msec)
- Variability in frame rate / lag
- Network delay
- Distortion
- Only important for its effects on user performance / preference
 - frame rate affects presence
 - network delay affects collaboration

Evaluation Metrics – Task Performance

- Speed / efficiency
- Accuracy
- Domain-specific metrics
 - o education: learning
 - training: spatial awareness
 - o design: expressiveness

Evaluation Metrics – User Preference

- Ease of use / learning
- Presence
- User comfort
- Usually subjective (measured in questionnaires, interviews)

User Comfort

- Simulator sickness
 - Kennedy Simulator Sickness Questionnaire (SSQ)
- Aftereffects of VE exposure
 - Stanney 1998: Aftereffects from virtual environment exposure: How long do they last?
- Arm/hand strain
- Eye strain

3D Usability Evaluation

Things to Consider

Formality of Evaluation

- Formal: independent & dependent variables, statistical analysis, strict adherence to procedure, hold constant all other variables, usually done to compare multiple techniques or at the end of the design process
- Informal: looser procedure, often more qualitative, subject comments very important, looking for broad usability issues, usually done during the design process to inform redesign

What is Being Evaluated?

- Application:
 - Prototype consider fidelity, scope, form
 - Complete working system
 - Controlled experiments are rare
- Interaction techniques / UI metaphors
 - Can still evaluate a prototype
 - More generic context of use
 - Formal experiments more often used
- Consider "Wizard of Oz" evaluation

Subjects / Participants

- o How many?
- What backgrounds?
 - o technical vs. non-technical
 - expert vs. novice VE users
 - domain experts vs. general population
- What age range?
- Recruiting
 - flyers
 - email/listservs/newsgroups
 - o psychology dept.
 - CS classes

Number of Evaluators

- Multiple evaluators often needed for 3DUI evaluations
- Roles
 - o cable wrangler
 - software controller
 - o note taker
 - timer
 - behavior observer
 - **O** ...

Procedure

- Welcome
- Informed consent
- Demographic/background questionnaire
- Pre-testing
- Familiarize with equipment
- Exploration time with interface
- Tasks
- Questionnaires / post-testing
- Interviews

Pilot Testing

- Pilot testing should be used to:
 - "debug" your procedure
 - identify variables that can be dropped from the experiment

Instructions

- How much to tell the subject about purpose of experiment?
- How much to tell the subject about how to use the interface?
- Always tell the subject what they should try to optimize in their behavior.
- If using think-aloud protocol, you will have to remind them many times.
- If using trackers, you will have to help users "learn" to move their heads, feet, and bodies – it doesn't come naturally to many people.
- Remind subjects you are NOT testing THEM, but the interface.

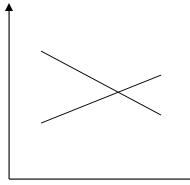
End of Official Material

The following slides are not part of the material for the final exam. However, they might be useful for you to complete your understanding of evaluations.

Formal Experiment Issues

- Choosing independent variables
- Choosing dependent variables
- Controlling (holding constant) other variables
- Within- vs. between-subjects design
- Counterbalancing order of conditions
- Full factorial or partial designs

Independent Variables


- Main variable of interest (e.g. interaction technique)
- Secondary variables
 - task characteristics
 - environment characteristics
 - system characteristics
 - user characteristics

Metrics (dependent variables)

- Task performance time
- Task errors
- User comfort (subjective ratings)
- Observations of behavior (e.g. strategies)
- Spoken subject comments (e.g. preferences)
- Surveys/questionnaires
- Interviews

Data Analysis

- Averages (means) of quantitative metrics
- Counts of errors, behaviors
- Correlate data to demographics
- Analysis of variance (ANOVA)
- Post Hoc analysis (t-tests)
- Visual analysis of trends (esp. learning)

- Interactions between variables are often important
- Expect high variance in 3DUI interaction studies

Analysis Tools

- SPSS, SAS, etc.
 - full statistical analysis packages
 - parametric and non-parametric tests
 - test correction mechanisms (e.g., Bonferroni)
- Excel
 - basic aggregation of data
 - Correlations
 - confidence intervals
 - graphs
- Matlab, Mathematica