CSE 167:

Introduction to Computer Graphics Lecture #7: Color and Shading

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

### Announcements

- ▶ Homework project #3 due this Friday, October 14<sup>th</sup>
  - ▶ To be presented starting 1:30pm in lab 260
- ▶ Late submissions for project #2 accepted until this Friday
- ▶ Ted problem "Resource Unavailable" solved

## Lecture Overview

### Color

- Color reproduction on computer monitors
- Perceptually uniform color spaces

## **Shading**

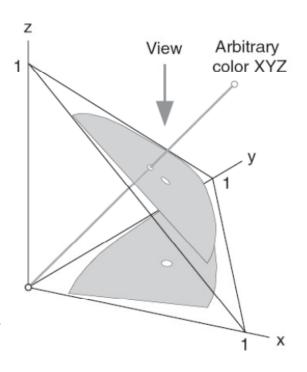
- Introduction
- Local shading models

## Summary

- ▶ CIE color spaces are defined by matching curves
  - At each wavelength, matching curves give weights of primaries needed to produce color perception of that wavelength
  - CIE RGB matching curves determined using trisimulus experiment
- Each distinct color perception has unique coordinates
  - CIE RGB values may be negative
  - CIE XYZ values are always positive

# CIE XYZ Color Space

### **Visualization**


- Interpret XYZ as 3D coordinates
- ▶ Plot corresponding color at each point
- Many XYZ values do not correspond to visible colors

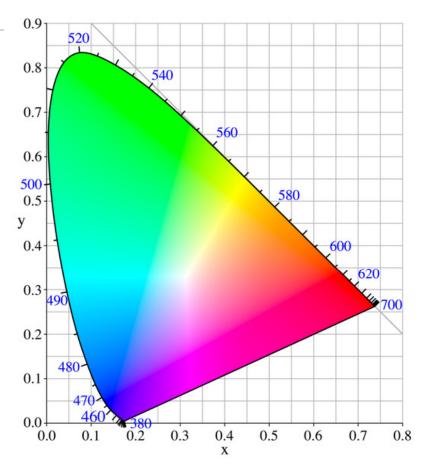


 Project from XYZ coordinates to 2D for more convenient visualization

$$x = \frac{X}{X + Y + Z} \quad y = \frac{Y}{X + Y + Z} \quad z = \frac{Z}{X + Y + Z}$$

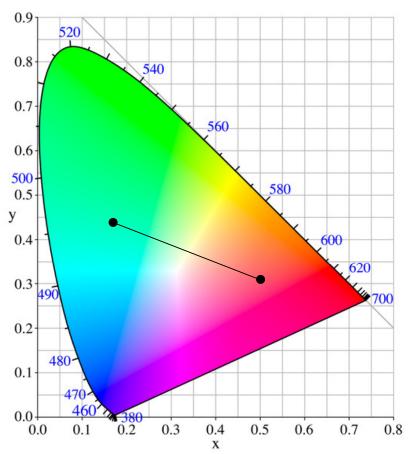
Drop z-coordinate




- Factor out luminance (perceived brightness) and chromaticity (hue)
  - x,y represent chromaticity of a color

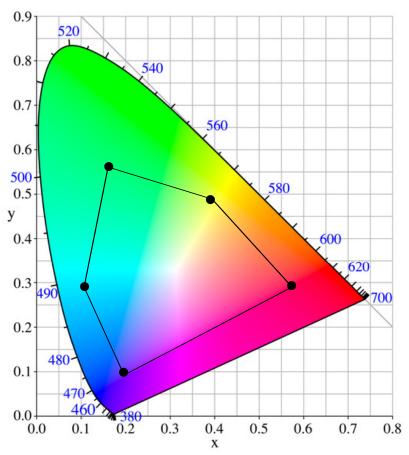
$$x = \frac{X}{X + Y + Z} \quad y = \frac{Y}{X + Y + Z} \quad 0 \le x, y \le 1$$

- Y is luminance
- CIE xyY color space
- Reconstruct XYZ values from xyY


$$X = \frac{Y}{y}x \qquad Z = \frac{Y}{y}(1 - x - y)$$

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary

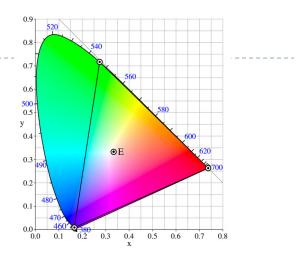



Colors shown do not correspond to colors represented by (x,y) coordinates!

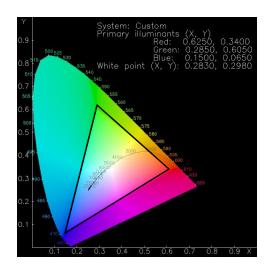
- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors



Colors shown do not correspond to colors represented by (x,y) coordinates!

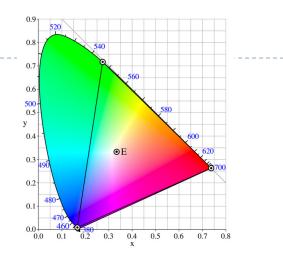

- Visualizes x,y plane (chromaticities)
- Pure spectral colors on boundary
- Weighted sum of any two colors lies on line connecting colors
- Weighted sum of any number of colors lies in convex hull of colors (gamut)



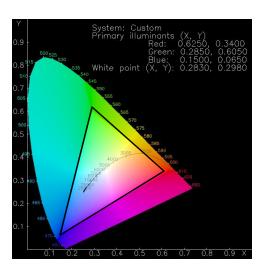

Colors shown do not correspond to colors represented by (x,y) coordinates!

## Gamut

- Any device based on three primaries can only produce colors within the triangle spanned by the primaries
- Points outside gamut correspond to negative weights of primaries




Gamut of CIE RGB primaries




Gamut of typical CRT monitor

- Given red, green, blue (RBG) values, what color will your monitor produce?
  - I.e., what are the CIE XYZ or CIE RGB coordinates of the displayed color?
  - How are OpenGL RGB values related to CIE XYZ, CIE RGB?
- Often you don't know!
  - OpenGL RGB ≠ CIE XYZ, CIE RGB



Gamut of CIE RGB primaries



Gamut of typical CRT monitor

### **Ideally:**

We know XYZ values for RGB primaries

$$(X_r, Y_r, Z_r)(X_g, Y_g, Z_g)(X_b, Y_b, Z_b)$$

- Monitor is linear
- RGB signal corresponds to weighted sum of primaries:

$$\begin{bmatrix} X_s \\ Y_s \\ Z_s \end{bmatrix} = r \begin{bmatrix} X_r \\ Y_r \\ Z_r \end{bmatrix} + g \begin{bmatrix} X_g \\ Y_g \\ Z_g \end{bmatrix} + b \begin{bmatrix} X_b \\ Y_b \\ Z_b \end{bmatrix}$$

$$\begin{bmatrix} X_s \\ Y_s \\ Z_s \end{bmatrix} = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

 Given desired XYZ values, find rgb values by inverting matrix

$$\begin{bmatrix} X_s \\ Y_s \\ Z_s \end{bmatrix} \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix}^{-1} = \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Similar to change of coordinate systems for 3D points

## In reality

- XYZ values for monitor primaries are usually not directly specified
  - Monitor brightness is adjustable

Monitors are not linear

Linear intensity 
$$I = 0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0$$
  
Linear encoding  $V_{\rm S} = 0.0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0$ 

lacktriangledown For typical CRT monitors  $I=V_s^\gamma$ 

$$\gamma \approx 2.2$$

### sRGB

- Standard color space, with standard conversion to CIE
  XYZ
- Designed to match RGB values of typical monitor under typical viewing conditions
  - If no calibration information available, it is best to interpret RGB values as sRGB
- ▶ sRGB is supported by OpenGL 2.0 with the ARB\_framebuffer\_sRGB extension
- For more details and transformation from CIE XYZ to sRGB:

http://en.wikipedia.org/wiki/SRGB\_color\_space

## Conclusions

- Color reproduction on consumer monitors is less than perfect
  - The same RGB values on one monitor look different than on another
  - Given a color in CIE XYZ coordinates, consumer systems do not reliably produce that color
- Need color calibration
  - Consumers do not seem to care
  - Standard for digital publishing, printing, photography

## Display calibration



## Lecture Overview

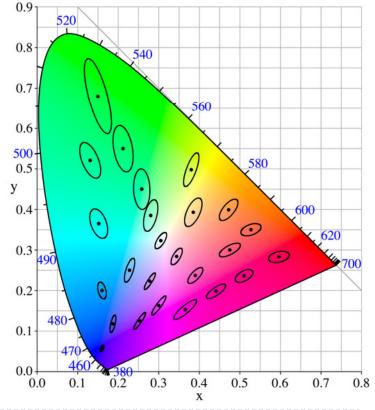
### Color

- Color reproduction on computer monitors
- Perceptually uniform color spaces

## **Shading**

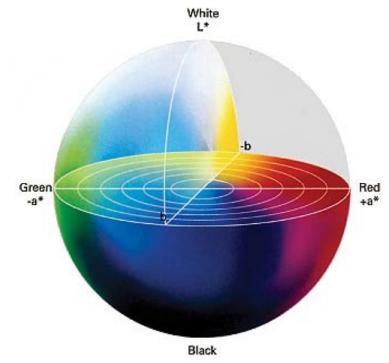
- Introduction
- Local shading models

# Perceptually Uniform Color Spaces


#### **Definition:**

Euclidean distance between color coordinates corresponds to perceived difference.

- CIE RGB, XYZ are not perceptually uniform:
  - Euclidean distance between RGB, XYZ coordinates does not correspond to perceived difference


# MacAdam Ellipses

- Experiment (1942) to identify regions in CIE xy color space that are perceived as the same color
- ▶ Found elliptical areas, MacAdam ellipses
- In perceptually uniform color space, each point on an ellipse should have the same distance to the center
  - Ellipses become circles



# CIE L\*,a\*,b\* (CIELAB)

- Most common perceptually uniform color space
  - ▶ L\* encodes lightness
  - a\* encodes position between magenta and green
  - b\* encodes position between yellow and blue
- Uses asterisk (\*) to distinguish from Hunter's Lab color space
- Conversion between CIE XYZ and CIELAB is non-linear



CIELAB color space

# Further Reading

# Wikipedia pages

- http://en.wikipedia.org/wiki/CIE\_1931\_color\_space
- http://en.wikipedia.org/wiki/CIELAB

### More details:

CIE Color Space: http://www.fho-emden.de/~hoffmann/ciexyz29082000.pdf

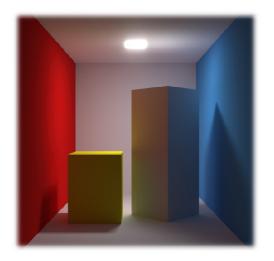
## Lecture Overview

### Color

- Color reproduction on computer monitors
- Perceptually uniform color spaces

## **Shading**

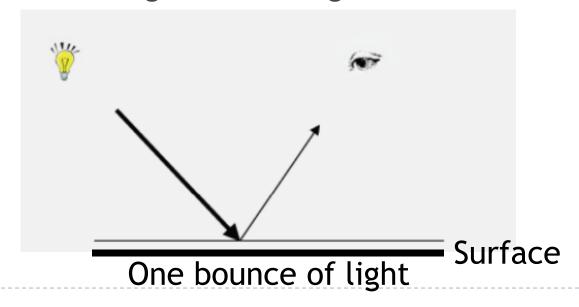
- Introduction
- Local shading models


# Shading

- Compute interaction of light with surfaces
- Requires simulation of physics
- "Global illumination"
  - Multiple bounces of light
  - Computationally expensive, minutes per image
  - Used in movies, architectural design, etc.

# Global Illumination

# Covered by CSE168








# Interactive Applications

- No physics-based simulation
- Simplified models
- Reproduce perceptually most important effects
- Local illumination
  - Only one bounce of light between light source and viewer



# Rendering Pipeline

Scene data Modeling and viewing transformation Shading **Projection** Scan conversion, visibility **Image** 

- Position object in 3D
- Determine colors of vertices
  - Per vertex shading
- Map triangles to 2D
- Draw triangles
  - Per pixel shading

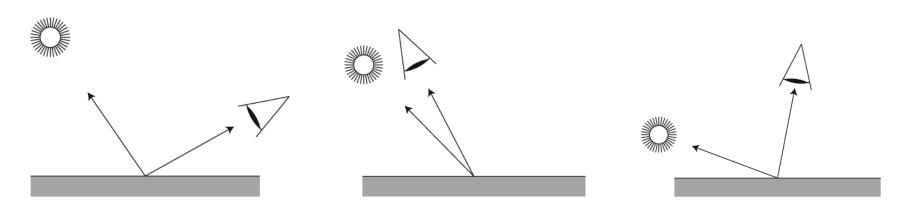
## Lecture Overview

### Color

- Color reproduction on computer monitors
- Perceptually uniform color spaces

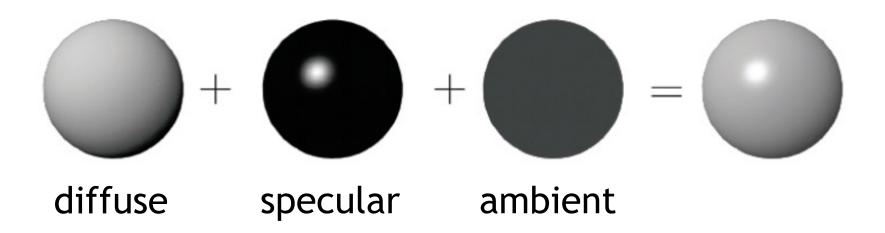
## **Shading**

- Introduction
- Local shading models


- What gives a material its color?
- How is light reflected by a
  - Mirror
  - White sheet of paper
  - Blue sheet of paper
  - Glossy metal

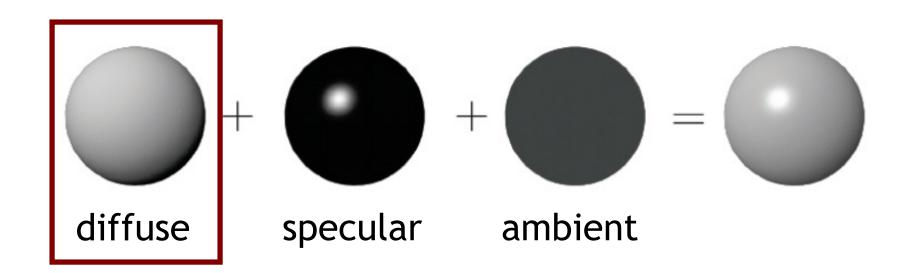






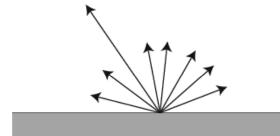

- Model reflection of light at surfaces
  - Assumption: no subsurface scattering
- ▶ Bidirectional reflectance distribution function (BRDF)
  - Given light direction, viewing direction, how much light is reflected towards the viewer
  - For any pair of light/viewing directions!




## Simplified model

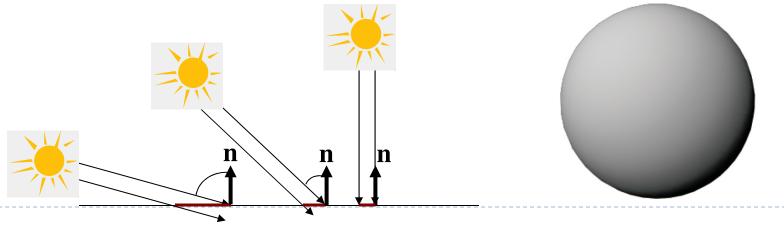
- Sum of 3 components
- Covers a large class of real surfaces




## Simplified model

- Sum of 3 components
- Covers a large class of real surfaces



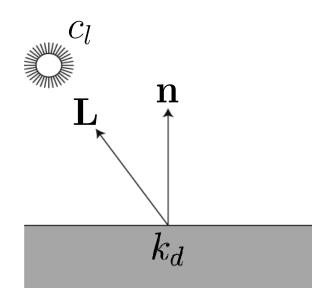

- Ideal diffuse material reflects light equally in all directions
- View-independent
- Matte, not shiny materials
  - Paper
  - Unfinished wood
  - Unpolished stone







- Beam of parallel rays shining on a surface
  - Area covered by beam varies with the angle between the beam and the normal
  - The larger the area, the less incident light per area
  - Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
- Object darkens as normal turns away from light
- Lambert's cosine law (Johann Heinrich Lambert, 1760)
- Diffuse surfaces are also called Lambertian surfaces




### Given

- Unit surface normal n
- Unit light direction L
- Material diffuse reflectance (material color)  $k_d$
- ightharpoonup Light color (intensity)  $c_l$
- ▶ Diffuse color  $c_d$  is:

$$c_d = c_l k_d(\mathbf{n} \cdot \mathbf{L})$$

Proportional to cosine between normal and light



#### **Notes**

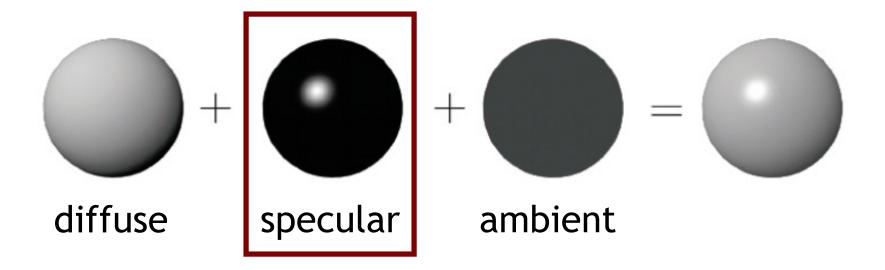
- Parameters  $k_d$ ,  $c_l$  are r,g,b vectors
- Need to compute r,g,b values of diffuse color  $c_d$  separately
- Parameters in this model have no precise physical meaning
  - c<sub>l</sub>: strength, color of light source
  - $k_d$ : fraction of reflected light, material color

### Diffuse Reflection

- Provides visual cues
  - Surface curvature
  - Depth variation



Lambertian (diffuse) sphere under different lighting directions


### OpenGL

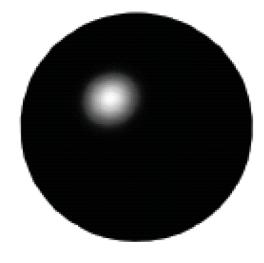
- Lights (glLight\*)
  - ▶ Values for light:  $(0,0,0) \le c_l \le (1,1,1)$
  - ▶ Definition: (0,0,0) is black, (1,1,1) is white
- OpenGL
  - Values for diffuse reflection
  - Fraction of reflected light:  $(0,0,0) \le k_d \le (1,1,1)$
- ▶ Consult OpenGL Programming Guide (Red Book)
  - See course web site

### Local Illumination

### Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

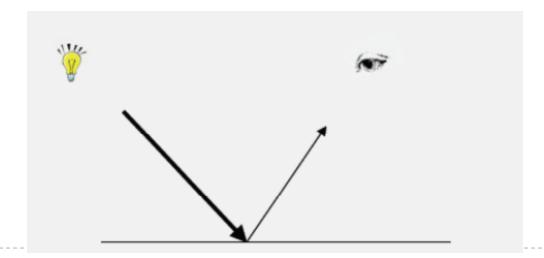



# Specular Reflection

#### Shiny surfaces

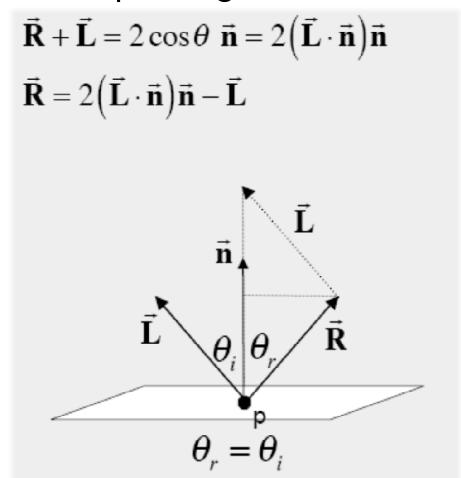
- Polished metal
- Glossy car finish
- Plastics

### Specular highlight


- Blurred reflection of the light source
- Position of highlight depends on viewing direction

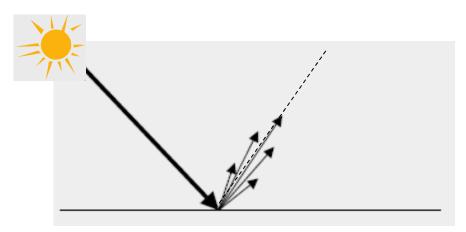


Specular highlight


# Specular Reflection

- Ideal specular reflection is mirror reflection
  - Perfectly smooth surface
  - Incoming light ray is bounced in single direction
  - Angle of incidence equals angle of reflection



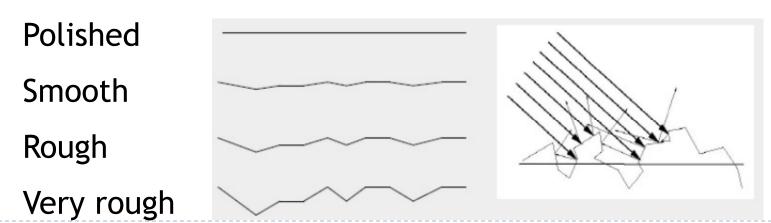

### Law of Reflection

▶ Angle of incidence equals angle of reflection



# Specular Reflection

- Many materials are not perfect mirrors
  - Glossy materials

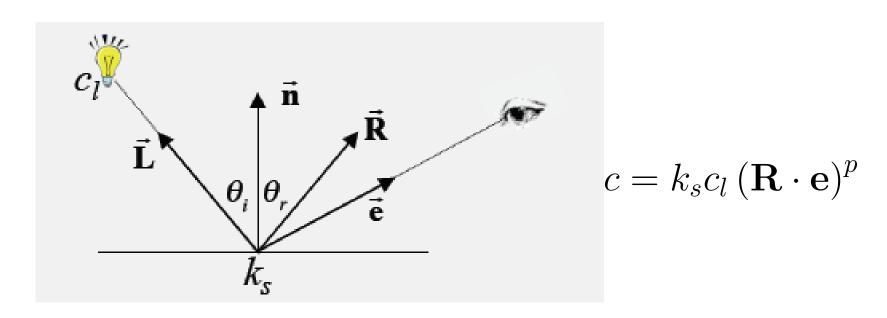




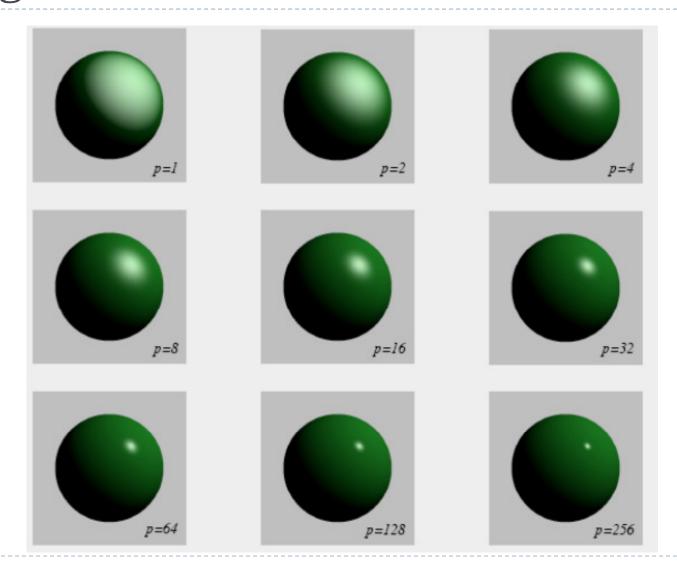

Glossy teapot

# Glossy Materials

- Assume surface composed of small mirrors with random orientation (micro-facets)
- Smooth surfaces
  - Micro-facet normals close to surface normal
  - Sharp highlights
- Rough surfaces
  - Micro-facet normals vary strongly
  - Blurry highlight




# Glossy Surfaces

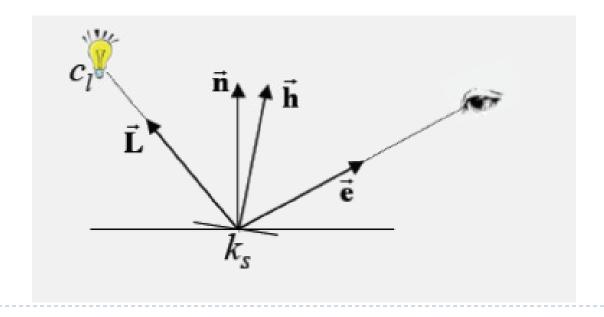

- Expect most light to be reflected in mirror direction
- Because of micro-facets, some light is reflected slightly off ideal reflection direction
- Reflection
  - Brightest when view vector is aligned with reflection
  - Decreases as angle between view vector and reflection direction increases

### Phong Model (Bui Tuong Phong, 1973)

- $\triangleright$  Specular reflectance coefficient  $k_s$
- ▶ Phong exponent p
  - Greater p means smaller (sharper) highlight



# Phong Model

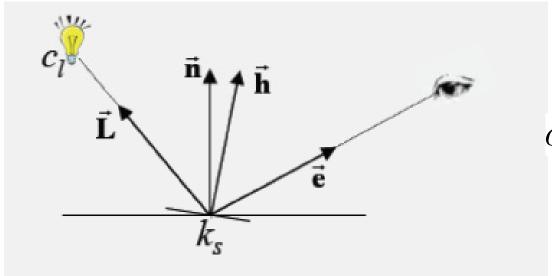



# Blinn Model (Jim Blinn, 1977)

Define unit halfway vector

$$\mathbf{h} = rac{\mathbf{L} + \mathbf{e}}{\|\mathbf{L} + \mathbf{e}\|}$$

 Halfway vector represents normal of micro-facet that would lead to mirror reflection to the eye

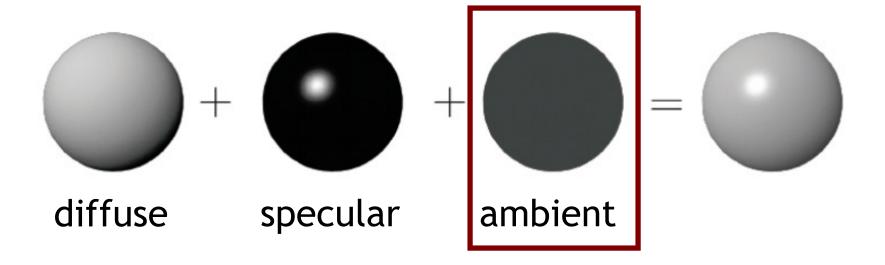



### Blinn Model

The larger the angle between micro-facet orientation and normal, the less likely

S

- Use cosine of angle between them
- Shininess parameter
- Very similar to Phong




$$c = k_s c_l \left( \mathbf{h} \cdot \mathbf{n} \right)^s$$

### Local Illumination

### Simplified model

- Sum of 3 components
- Covers a large class of real surfaces



# Ambient Light

- In real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
  - Add constant ambient light at each point:  $k_a c_a$
  - ightharpoonup Ambient light color:  $c_a$
  - ightharpoonup Ambient reflection coefficient:  $k_a$
- Areas with no direct illumination are not completely dark

# Complete Blinn Model

- ▶ Blinn model with several light sources *I*
- All colors and reflection coefficients have separate values for red, green, blue

#### **BRDFs**

- Diffuse, Phong, Blinn models are instances of bidirectional reflectance distribution functions (BRDFs)
- ▶ For each pair of light directions L, viewing direction e, return fraction of reflected light
- ▶ Shading with general BRDF f

$$c = \sum_{i} c_{li} f(\mathbf{L}_i, \mathbf{e})$$

- Many forms of BRDFs in graphics, often named after inventors
  - Cook-Torrance
  - Ward
  - ...

### Next Lecture

- Light sources
- Shader programming:
  - Vertex shaders
  - Fragment shaders