CSE 190: 3D User Interaction

Lecture #16: 3D UI Design 2 Jürgen P. Schulze, Ph.D.

Announcements

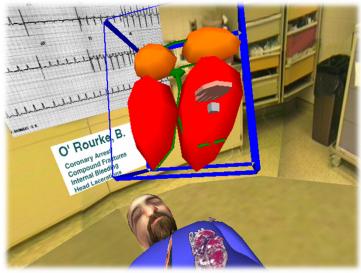
- Final Exam
 - Tuesday, March 19th, 11:30am-2:30pm
 - Closed book
 - See new section on course web page.
- Sid's office hours in lab 260 this week
- CAPE
 - Web site closes March 18 at 8am
 - Responses to all surveys are completely anonymous.
 - Only a summary of results is provided to the academic department and the course instructor.
 - This summary is provided only after final grades are posted.
 - A minimum number of three evaluations must be submitted by students for summaries to made available.

2

• Please return borrowed webcams, Hydras, Kinects

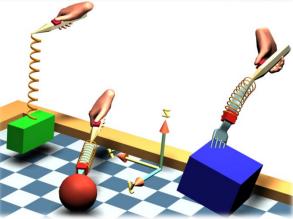
Paper Presentations Next Lecture

• Joey: Predator-prey vision metaphor for multi-tasking virtual environments


Paper Presentations Today

- Bryan: Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture
- Arick: Augmented perception of satiety: controlling food consumption by changing apparent size of food with augmented reality

More on 3D UI Design Strategies


Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

Highlighting object about to be selected

Spring Manipulation Tools, Michal Koutek, TU Delft

Designing for Humans – Passive Haptics

- Match shape and appearance of virtual object with physical prop
 - User both sees and feels
- Advantages
 - Inexpensive haptic/tactile feedback
 - Establish perceptual frame of reference
- Disadvantages
 - Scalability
 - Performance improvements have not yet been measured

Designing for Humans – Constraints

- Constraints:
 - Are a relation between variables that must be satisfied
 - Example: a line should stay horizontal
 - Define geometrical coherence of scene
 - Can make interaction simpler and improve accuracy

Designing for Humans – Constraint Types

- Physically realistic constraints
 - Collision detection and avoidance
 - Gravity
 - Application dependent
- DOF reduction
 - Simplify interaction (example: constrain travel to ground)

- Dynamic alignment tools
 - Grids and snapping, guiding surfaces
- Intelligent constraints
 - Deal with semantics
 - Example: lamp can only stand on horizontal surfaces

Designing for Humans – Two Handed Control

- Also known as bimanual input
- Transfer everyday manipulation experiences to 3DUI
- Can increase user performance on certain tasks
- Active topic of research

Designing for Humans – Guiard's Framework

- Tasks are
 - Unimanual: throwing darts
 - Bimanual symmetric
 - Synchronous: pulling a rope
 - Asynchronous: typing on keyboard
 - Bimanual asymmetric (cooperative): holding a cell phone with one hand, operating it with the other

- Division of labor (hand roles) for asymmetric scenario:
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements, nondominant hand performs gross manipulation
 - Manipulation is initiated by nondominant hand

Designing for Different User Groups

12

• Age

- Prior 3DUI experience
- Physical characteristics: arm length, etc.
- Perceptual, cognitive, motor capabilities
 - Color recognition
 - Stereo vision
 - Spatial abilities

Designing for User Comfort

- Weight of equipment
- Keep users in proper physical space
- Hygiene and public installations
- Keep sessions short (30-45min max) to prevent sickness, fatigue