CSE 167

Discussion 7

Jimmy
ft Kevin

Announcements

- Project 4 due Friday 2pm
- Late grading for Project 4 is extended an extra week due to Thanksgiving
- Start preparing for midterm + final project!

Cubic Bézier Curve

- Defined by four control points:
- Two interpolated endpoints (points are on the curve)
b Two points control the tangents at the endpoints

Recursive Linear Interpolation

$$
\left.\begin{array}{rl}
\mathbf{x}=\operatorname{Lerp}\left(t, \mathbf{r}_{0}, \mathbf{r}_{1}\right) \\
\mathbf{r}_{\mathbf{r}_{1}} & =\operatorname{Lerp}\left(t, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \\
\mathbf{q}_{0} & =\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
\mathbf{q}_{1} & =\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{1}\right)
\end{array} \mathbf{p}_{\mathbf{p}_{2}}\right)
$$

Equivalently...

$$
\begin{aligned}
\mathbf{x}(t) & =\overbrace{\left(-t^{3}+3 t^{2}-3 t+1\right)}^{B_{0}(t)} \mathbf{p}_{0}+\overbrace{\left(3 t^{3}-6 t^{2}+3 t\right)}^{B_{1}(t)} \mathbf{p}_{1} \\
& +\underbrace{\left(-3 t^{3}+3 t^{2}\right)}_{B_{2}(t)} \mathbf{p}_{2}+\underbrace{\left(t^{3}\right)}_{B_{3}(t)} \mathbf{p}_{3}
\end{aligned}
$$

Cubic Polynomial Form

Start with Bernstein form:

$$
\begin{aligned}
& \mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3} \\
& \mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t{ }_{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t t_{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1 \\
& \begin{array}{l}
\mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \quad \begin{array}{l}
\mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
\mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
\mathbf{d}
\end{array} \\
\end{array} . \begin{array}{l}
\left.\mathbf{p}_{0}\right)
\end{array}
\end{aligned}
$$

Good for fast evaluation

- Precompute constant coefficients (a,b,c,d)
- Can also write as a matrix, which is even faster

Global Parameterization

- Given N curve segments $\mathbf{x}_{0}(t), \mathbf{x}_{l}(t), \ldots, \mathbf{x}_{N-l}(t)$
- Each is parameterized for t from 0 to I
- Define a piecewise curve
- Global parameter u from 0 to N

$$
\begin{aligned}
& \mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}(u), & 0 \leq u \leq 1 \\
\mathbf{x}_{1}(u-1), & 1 \leq u \leq 2 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}(u-(N-1)), & N-1 \leq u \leq N
\end{array}\right. \\
& \mathbf{x}(u)=\mathbf{x}_{i}(u-i), \text { where } i=\|\lfloor \rfloor
\end{aligned}
$$

Alternate solution: u defined from 0 to 1

$$
\mathbf{x}(u)=\mathbf{x}_{i}(N u-i), \text { where } i=\| N u \rrbracket
$$

Piecewise Bézier curve

- Given $3 N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{aligned}
\mathbf{x}_{0}(t) & =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3} \\
\mathbf{x}_{1}(t) & =B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2}(t) \mathbf{p}_{5}+B_{3}(t) \mathbf{p}_{6} \\
& \vdots \\
\mathbf{x}_{N-1}(t) & =B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N-2}+B_{2}(t) \mathbf{p}_{3 N-1}+B_{3}(t) \mathbf{p}_{3 N}
\end{aligned}
$$

Piecewise Bézier Curve

- Parameter in $0<=u<=3 N$

$$
\mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}\left(\frac{1}{3} u\right), & 0 \leq u \leq 3 \\
\mathbf{x}_{1}\left(\frac{1}{3} u-1\right), & 3 \leq u \leq 6 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}\left(\frac{1}{3} u-(N-1)\right), & 3 N-3 \leq u \leq 3 N
\end{array}\right.
$$

$$
\mathbf{x}(u)=\mathbf{x}_{i}\left(\frac{1}{3} u-i\right) \text {, where } i=\left\lfloor\frac{1}{3} u\right\rfloor
$$

Parametric Continuity

- C^{0} continuity:
- Curve segments are connected
- C^{\prime} continuity:
- C^{0} \& Ist-order derivatives agree
- Curves have same tangents
- Relevant for smooth shading
- C^{2} continuity:
- $C^{\prime} \& 2 n d-o r d e r ~ d e r i v a t i v e s ~ a g r e e ~$
- Curves have same tangents and curvature
- Relevant for high quality reflections

$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve and rarely necessary

C_{1} discontinuous
C_{1} continuous

Recommended Structure

- Use your scene graph code from Project 3, and implement some new Geometry subclasses:
- BezierCurve
- Has a GetPoint(t) method
- Should draw N sampled points from the curve (project requires $N>=150$)
- Should also draw its own control points
- Track
- Contains 8 children BezierCurves
- Supports keyboard controls for editing control points
- Should draw control handles: lines through related control points, which are not all owned by any single BezierCurve

More tips

- We can precompute the sampled points inside each BezierCurve, and only update them when that curve is updated.
- Draw lines/points by passing GL_LINE_STRIP/GL_POINTS instead of GL_TRIANGLES to gIDrawElements/gIDrawArrays
- see docs - GL_LINE_STRIP draws a line for each adjacent pair, GL_LINES draws a lines for the pairs $(0,1),(2,3), \ldots$
- A clean way to enforce Cl continuity is to implement more Geometry types
- Example I: AnchorPoint and TangentPoint subclasses of Geometry
- Example 2: ControlHandle subclass of Geometry

Sphere Movement

- We want the sphere to move at a constant velocity and stay on the track.
- Pick any point on the track (e.g. a control point) as the initial location. Always keep track of what line segment we're on.
- Calculate the distance to travel in the current frame (frame_distance $=$ velocity * delta_time)
- If traveling this distance keeps the point on the same line segment, we're done.

Sphere Movement

- Otherwise, travel to the end of the current line segment. Subtract the distance traveled from frame_distance. Then move on to the next line segment (which we're now on the initial point of).
- Repeat until frame_distance $=0$.
- You also need to handle the case where the sphere moves across different pieces of the track. It's conceptually exactly the same (two adjacent line segments) but requires a bit of extra bookkeeping if you structure your code using BezierCurve objects.

