
CSE 167:

Introduction to Computer Graphics

Lecture #9: Scene Graphs

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015

Announcements

� Project 4 due tomorrow at 1pm

� Midterm results

2

Midterm Statistics

3

Maximum Score 80

Average score 62.4

Highest score 80

Lowest score 34

70-80 14

60-70 26

50-60 10

40-50 7

30-40 1

Exams submitted 58

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

4

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image
5

Graphics System Architecture

Interactive Applications

� Games, scientific visualization, virtual reality

Rendering Engine, Scene Graph API

� Implement functionality commonly required in applications

� Back-ends for different low-level APIs

� No broadly accepted standards

� Examples: OpenSceneGraph, NVSG, Java3D, Ogre

Low-level graphics API

� Interface to graphics hardware

� Highly standardized: OpenGL, Direct3D

6

Scene Graph APIs

� APIs focus on different types of applications

� OpenSceneGraph (www.openscenegraph.org)
� Scientific visualization, virtual reality, GIS (geographic information
systems)

� NVIDIA SceniX (https://developer.nvidia.com/scenix)
� Optimized for shader support

� Support for interactive ray tracing

� Java3D (http://java3d.java.net)

� Simple, easy to use, web-based applications

� Ogre3D (http://www.ogre3d.org/)
� Games, high-performance rendering

7

Commonly Offered Functionality

� Resource management

� Content I/O (geometry, textures, materials, animation sequences)

� Memory management

� High-level scene representation

� Graph data structure

� Rendering

� Optimized for efficiency (e.g., minimize OpenGL state changes)

8

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

9

Scene Graphs

� Data structure for intuitive construction of 3D scenes

� So far, our GLUT-based projects store a linear list of
objects

� This approach does not scale to large numbers of objects
in complex, dynamic scenes

10

Solar System

Example from http://www.gamedev.net

11

Star

Rotation

Planet 2Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Solar System with Wobble

12

Star

Rotation

Planet 2

Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Wobble

New Node

Planets rotating at different speeds

13

Star

Rotation

Planet 2

Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Wobble

Rotation

Separated

Data Structure

� Requirements

� Collection of separable geometry models

� Organized in groups

� Related via hierarchical transformations

� Use a tree structure

� Nodes have associated local coordinates

� Different types of nodes

� Geometry

� Transformations

� Lights

� Many more

14

Class Hierarchy

� Many designs possible

� Design driven by intended application
� Games

� Optimized for speed

� Large-scale visualization
� Optimized for memory requirements

� Modeling system
� Optimized for editing flexibility

15

Sample Class Hierarchy

16

Node

GeodeGroup

MatrixTransform Switch Sphere Billboard

Inspired by OpenSceneGraph

Class Hierarchy

Node

� Common base class for all node types

� Stores node name, pointer to parent, bounding box

Group

� Stores list of children

Geode

� Geometry Node

� Knows how to render a specific piece of geometry

17

Class Hierarchy

MatrixTransform

� Derived from Group

� Stores additional transformation M

� Transformation applies to sub-tree below node

� Monitor-to-world transformation M0M1

18

World

M0

M1

Star

Planet

Moon A Moon B

Lecture Overview

� Scene Graphs & Hierarchies

� Introduction

� Data structures

� Performance Optimization

� Level-of-detail techniques

� View Frustum Culling

19

Sample Class Hierarchy

20

Node

GeodeGroup

MatrixTransform Switch Sphere Billboard

Inspired by OpenSceneGraph

Class Hierarchy

Node

� Common base class for all node types

� Stores node name, pointer to parent, bounding box

Group

� Stores list of children

Geode

� Geometry Node

� Knows how to render a specific piece of geometry

21

Class Hierarchy

MatrixTransform

� Derived from Group

� Stores additional transformation M

� Transformation applies to sub-tree below node

� Monitor-to-world transformation M0M1

22

World

M0

M1

Star

Planet

Moon A Moon B

Class Hierarchy

Switch

� Derived from Group node

� Allows hiding (not rendering) all or subsets of its child nodes

� Can be used for state changes of geometry, or “key frame”
animation

23

M1

Moon Visible Moon Infrared

Class Hierarchy

Sphere

� Derived from Geode

� Pre-defined geometry with parameters, e.g., for tesselation level,
solid/wireframe, etc.

Billboard

� Special geometry node to display an image always facing the viewer

24

Sphere at different tessellation levels

Billboarded Tree

Solar System

25

Star

Rotation

Planet 2Planet 1

Moon DMoon CMoon BMoon A

RotationRotation

World

Source Code for Solar System
world = new Group();

world.addChild(new Star());

rotation0 = new MatrixTransform(…);

rotation1 = new MatrixTransform(…);

rotation2 = new MatrixTransform(…);

world.addChild(rotation0);

rotation0.addChild(rotation1);

rotation0.addChild(rotation2);

rotation0.addChild(new Planet(“1”));

rotation0.addChild(new Planet(“2”));

rotation1.addChild(new Moon(“A”));

rotation1.addChild(new Moon(“B”));

rotation2.addChild(new Moon(“C”));

rotation2.addChild(new Moon(“D”));

26

Star

Rotation
0

Planet 2Planet 1

Moon DMoon CMoon BMoon A

Rotation
2

Rotation
1

World

Basic Rendering

Group::draw(Matrix4 C)

{

for all children

draw(C);

}

MatrixTransform::draw(Matrix4 C)

{

C_new = C*M; // M is a class member

for all children

draw(C_new);

}

Geode::draw(Matrix4 C)

{

setModelView(C);

render(myObject);

}

� Traverse the tree recursively

Initiate rendering with
world->draw(IDENTITY);

27

Modifying the Scene

� Change tree structure

� Add, delete, rearrange nodes

� Change node parameters

� Transformation matrices

� Shape of geometry data

� Materials

� Create new node subclasses

� Animation, triggered by timer events

� Dynamic “helicopter-mounted” camera

� Light source

� Create application dependent nodes

� Video node

� Web browser node

� Video conferencing node

� Terrain rendering node

28

Benefits of a Scene Graph

� Can speed up rendering by efficiently using low-level API

� Avoid state changes in rendering pipeline

� Render objects with similar properties in batches (geometry,
shaders, materials)

� Change parameter once to affect all instances of an
object

� Abstraction from low level graphics API

� Easier to write code

� Code is more compact

� Can display complex objects with simple APIs

� Example: osgEarth class provides scene graph node which
renders a Google Earth-style planet surface

29

