CSE 167: Introduction to Computer Graphics Lecture #9: Scene Graphs

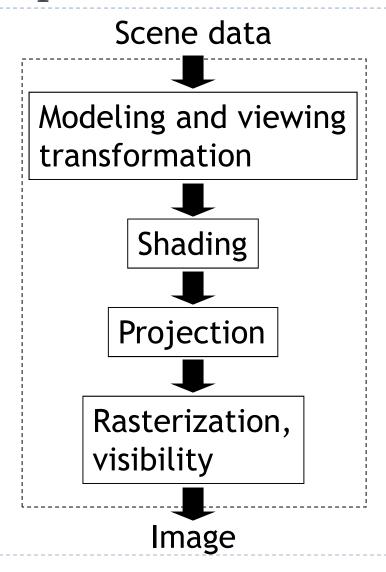
Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015

Announcements

- Project 4 due tomorrow at Ipm
- Midterm results

Midterm Statistics

Maximum Score	80
Average score	62.4
Highest score	80
Lowest score	34
70-80	14
60-70	26
50-60	10
40-50	7
30-40	1
# Exams submitted	58



Lecture Overview

- Scene Graphs & Hierarchies
 - Introduction
 - Data structures
- Performance Optimization
 - Level-of-detail techniques
 - View Frustum Culling

Rendering Pipeline

Graphics System Architecture

Interactive Applications

Games, scientific visualization, virtual reality

Rendering Engine, Scene Graph API

- Implement functionality commonly required in applications
- Back-ends for different low-level APIs
- No broadly accepted standards
- Examples: OpenSceneGraph, NVSG, Java3D, Ogre

Low-level graphics API

- Interface to graphics hardware
- Highly standardized: OpenGL, Direct3D

Scene Graph APIs

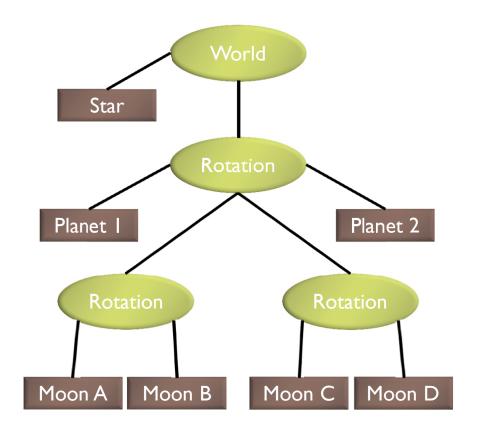
- APIs focus on different types of applications
- OpenSceneGraph (<u>www.openscenegraph.org</u>)
 - Scientific visualization, virtual reality, GIS (geographic information systems)
- NVIDIA SceniX (https://developer.nvidia.com/scenix)
 - Optimized for shader support
 - Support for interactive ray tracing
- Java3D (http://java3d.java.net)
 - Simple, easy to use, web-based applications
- Ogre3D (http://www.ogre3d.org/)
 - Games, high-performance rendering

Commonly Offered Functionality

- Resource management
 - Content I/O (geometry, textures, materials, animation sequences)
 - Memory management
- High-level scene representation
 - Graph data structure
- Rendering
 - Optimized for efficiency (e.g., minimize OpenGL state changes)

Lecture Overview

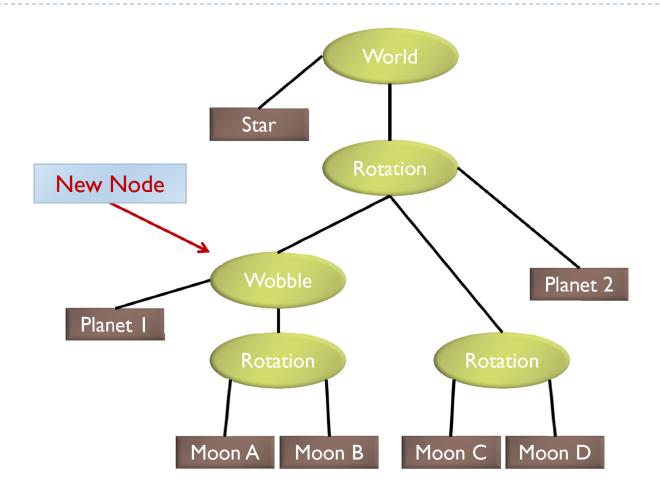
- Scene Graphs & Hierarchies
 - Introduction
 - Data structures
- Performance Optimization
 - Level-of-detail techniques
 - View Frustum Culling



Scene Graphs

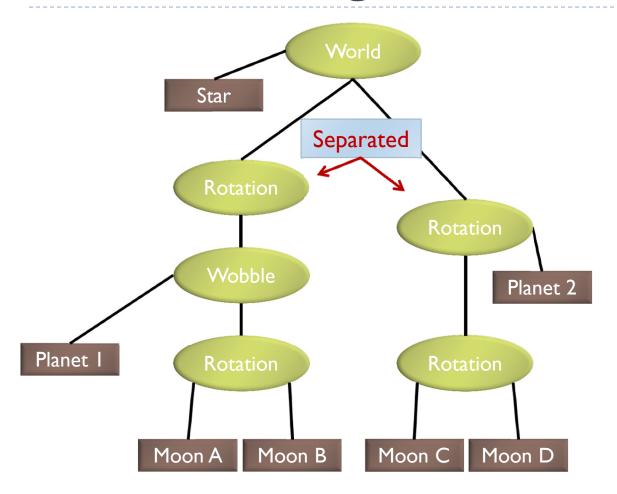
- Data structure for intuitive construction of 3D scenes
- So far, our GLUT-based projects store a linear list of objects
- This approach does not scale to large numbers of objects in complex, dynamic scenes

Solar System



- Draw the star
- Save the current matrix
- Apply a rotation
 - Draw Planet One
 - · Save the current matrix
 - Apply a second rotation
 - Draw Moon A
 - Draw Moon B
 - · Reset the matrix we saved
 - Draw Planet two
 - . Save the current matrix
 - Apply a rotation
 - Draw Moon C
 - Draw Moon D
 - · Reset the matrix we saved
- · Reset the matrix we saved

Example from http://www.gamedev.net

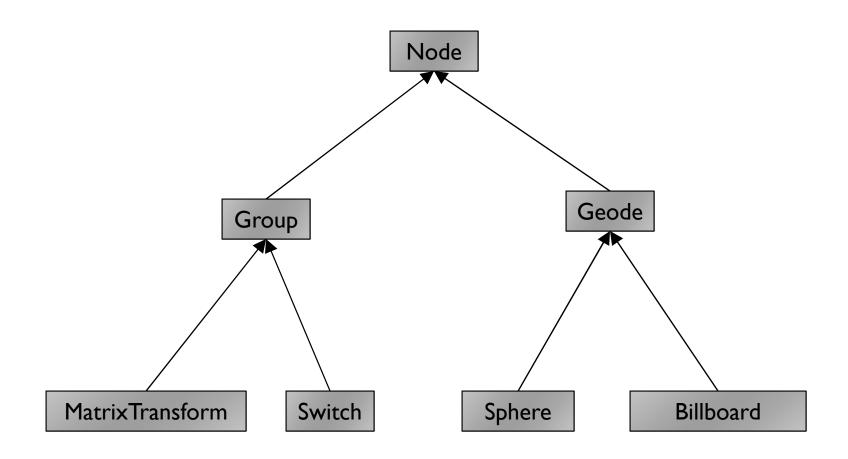


Solar System with Wobble

Planets rotating at different speeds

- · Draw the Star
- · Save the current matrix
- Apply a rotation
 - Save the current matrix
 - Apply a wobble
 - Draw Planet 1
 - Save the current matrix
 - Apply a rotation
 - Draw Moon A
 - Draw Moon B
 - · Reset the Matrix
 - · Reset the matrix
 - · Reset the matrix
- · Reset the matrix
- · Save the current matrix
- Apply a rotation
 - Draw Planet 2
 - Save the current matrix
 - Apply a rotation
 - Draw Moon C
 - Draw Moon D
 - · Reset the current matrix
 - · Reset the current matrix
- · Reset the current matrix

Data Structure


- Requirements
 - Collection of separable geometry models
 - Organized in groups
 - Related via hierarchical transformations
- Use a tree structure
- Nodes have associated local coordinates
- Different types of nodes
 - Geometry
 - Transformations
 - Lights
 - Many more

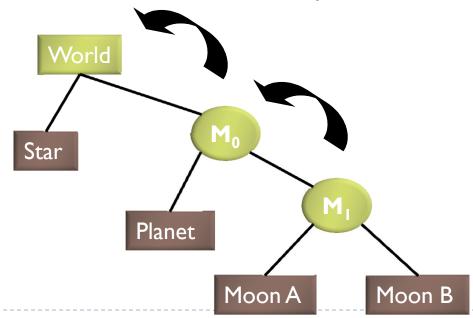
- Many designs possible
- Design driven by intended application
 - Games
 - Optimized for speed
 - Large-scale visualization
 - Optimized for memory requirements
 - Modeling system
 - Optimized for editing flexibility

Sample Class Hierarchy

Inspired by OpenSceneGraph

Node

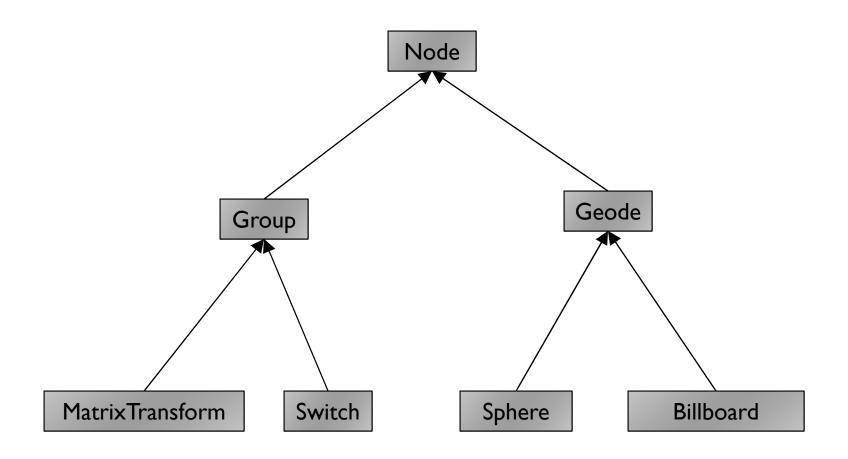
- Common base class for all node types
- Stores node name, pointer to parent, bounding box Group
- Stores list of children


Geode

- Geometry Node
- ▶ Knows how to render a specific piece of geometry

MatrixTransform

- Derived from Group
- Stores additional transformation M
- Transformation applies to sub-tree below node
- ▶ Monitor-to-world transformation M₀M₁



Lecture Overview

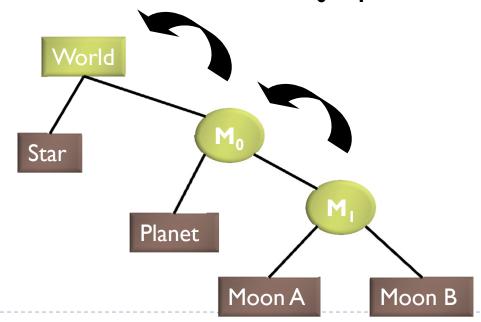
- Scene Graphs & Hierarchies
 - Introduction
 - Data structures
- Performance Optimization
 - Level-of-detail techniques
 - View Frustum Culling

Sample Class Hierarchy

Inspired by OpenSceneGraph

Node

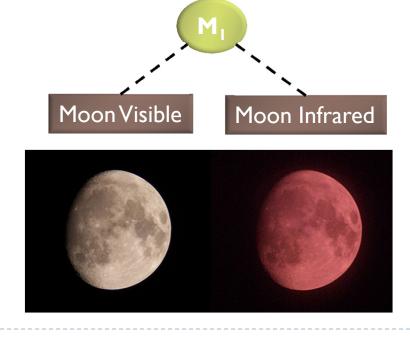
- Common base class for all node types
- Stores node name, pointer to parent, bounding box
 Group
- Stores list of children


Geode

- Geometry Node
- ▶ Knows how to render a specific piece of geometry

MatrixTransform

- Derived from Group
- Stores additional transformation M
- Transformation applies to sub-tree below node
- Monitor-to-world transformation M_0M_1


Switch

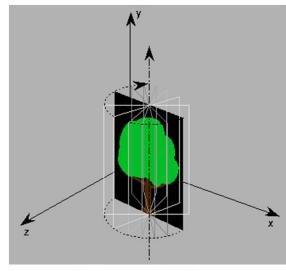
Derived from Group node

Allows hiding (not rendering) all or subsets of its child nodes

Can be used for state changes of geometry, or "key frame"

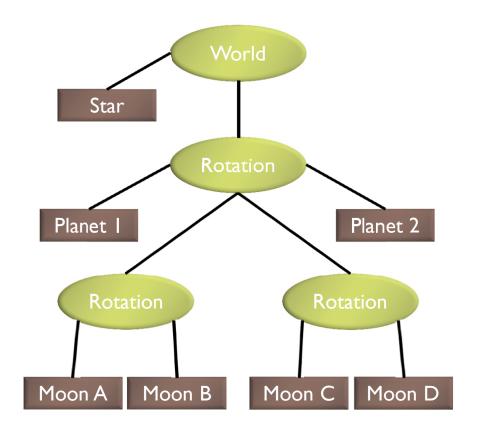
animation

Sphere


- Derived from Geode
- Pre-defined geometry with parameters, e.g., for tesselation level, solid/wireframe, etc.

Billboard

Special geometry node to display an image always facing the viewer


Sphere at different tessellation levels

Billboarded Tree

Solar System

Source Code for Solar System

```
world = new Group();
world.addChild(new Star());
rotation0 = new MatrixTransform(...);
                                          Star
rotation1 = new MatrixTransform(...);
                                                  Rotation
rotation2 = new MatrixTransform(...);
world.addChild(rotation0);
rotation0.addChild(rotation1);
                                                              Planet 2
                                       Planet I
rotation0.addChild(rotation2);
rotation0.addChild(new Planet("1"));
                                          Rotation
rotation0.addChild(new Planet("2"));
rotation1.addChild(new Moon("A"));
rotation1.addChild(new Moon("B"));
rotation2.addChild(new Moon("C"));
                                      Moon A
                                              Moon B
                                                       Moon C
                                                               Moon D
rotation2.addChild(new Moon("D"));
```


Basic Rendering

Traverse the tree recursively

```
Group::draw(Matrix4 C)
  for all children
    draw(C);
MatrixTransform::draw(Matrix4 C)
  C \text{ new} = C*M; // M is a class member
  for all children
    draw(C_new);
Geode::draw(Matrix4 C)
                                      Initiate rendering with
  setModelView(C);
                                      world->draw(IDENTITY);
  render(myObject);
```


Modifying the Scene

- Change tree structure
 - Add, delete, rearrange nodes
- Change node parameters
 - Transformation matrices
 - Shape of geometry data
 - Materials
- Create new node subclasses
 - Animation, triggered by timer events
 - Dynamic "helicopter-mounted" camera
 - Light source
- Create application dependent nodes
 - Video node
 - Web browser node
 - Video conferencing node
 - ▶ Terrain rendering node

Benefits of a Scene Graph

- Can speed up rendering by efficiently using low-level API
 - Avoid state changes in rendering pipeline
 - Render objects with similar properties in batches (geometry, shaders, materials)
- Change parameter once to affect all instances of an object
- Abstraction from low level graphics API
 - Easier to write code
 - Code is more compact
- Can display complex objects with simple APIs
 - Example: osgEarth class provides scene graph node which renders a Google Earth-style planet surface

