
CSE 167
Discussion 08 ft. Weichen

11/21/2018



In today’s discussion...
● Final Project

● Midterm 2



Announcements
● First blog entry for the final project is due next Tuesday (Nov. 27)

○ Please find some team member(s) as soon as possible if you haven’t done yet

● Second blog: Dec. 04
● Midterm 2 is on next Thursday (Nov. 29)
● Project 4 late grading is on next Friday (Nov. 30)
● No class on Thursday

○ Thanksgiving break! 



Final Project
● Overview 

○ Teams of 2 or 3
○ 3 skill points per person
○ Start early



Final Project
● Grading

○ Blog (10 points) : 
■ Nov. 27(4 points)
■ Dec. 04(3 points)
■ Dec. 11(3 points)

○ Video (5 points) : by 3pm on Dec. 13
○ Technical Features (70 points)
○ Creativity (15 points)
○ Extra Credit (10 points):

■ Advanced Effects
■ Virtual Reality



Blog
● The first entry should contain (at a minimum): 

○ Name of the project and team members
○ Short description of the project
○ Technical features you are going to implement
○ Creative aspects of your project

● The following entries should be progress updates
○ Progress and any change since the last entry
○ Screenshots



Video
● Important!
● A good/bad demo experience can sometimes boost/dampen

users’ impression when they try out your application!
● Note that your grade on the “Creativity” aspects can be affected by

your video.



Project Examples
● Projects made by students from last year
● They serve as inspirations but it does not mean all the projects received 

full credits.
● https://www.youtube.com/playlist?list=PLINx2DKpKpTvFEnpwyzLmtmZK5

LXlBP5x

https://www.youtube.com/playlist?list=PLINx2DKpKpTvFEnpwyzLmtmZK5LXlBP5x
https://www.youtube.com/playlist?list=PLINx2DKpKpTvFEnpwyzLmtmZK5LXlBP5x


Final Project
● Grading

○ Blog (10 points) : 
■ Nov. 27(4 points)
■ Dec. 04(3 points)
■ Dec. 11(3 points)

○ Video (5 points) : by 3pm on Dec. 13
○ Technical Features (70 points)
○ Creativity (15 points)
○ Extra Credit (10 points):

■ Advanced Effects
■ Virtual Reality



Technical Features
● 3 skill points per person
● Each team must implement at least one medium or hard feature for each 

team member.
● Some technical features today

○ Toon/Cel shading
○ Particle effect
○ Frame buffer
○ Collision detection



Toon shading
● Designed to make computer graphics appear to be flat by using less 

shading colors



Technical Features
● Some technical features today

○ Toon/Cel shading
○ Particle effect
○ Frame buffer
○ Collision detection



Particle effect
● Large amount of particles (sprites, points, or anything) follow some 

combinations of physical and non-physical rules
● Simulation stage
● Rendering stage



Particle effect
● Large amount of particles (sprites, points, or anything) follow some 

combinations of physical and non-physical rules
● Simulation stage

○ Compute all forces acting within the system in the current configuration 
○ Compute the resulting acceleration for each particle (a=f/m) and integrate over some 

small time step (deltaTime) to get new positions

● Rendering stage



Particle effect
● Large amount of particles (sprites, points, or anything) follow some 

combinations of physical and non-physical rules
● Simulation stage
● Rendering stage

○ One VBO for the positions of all particles 
○ One VBO for the colors of each particle



Particle effect
● Simulation stage

● (You don’t have to follow 
this implementation)

Based on CSE 169 Lecture 10 - Particle Systems



Technical Features
● Some technical features today

○ Toon/Cel shading
○ Particle effect
○ Frame buffer
○ Collision detection



Frame buffer
● You will need this for:

○ Shadow
○ Reflection
○ Motion Blur
○ Screen space ambient occlusion
○ Screen space reflection (commonly used in modern game/engine, such as BF5, Unity3D)
○ ...



Frame buffer
● We may want RGB/normal/depth images from some specific perspectives, 

and use them later for different graphical effects.
○ Shadow - depth images from the perspective of the light
○ SSAO - screen-space normal image, etc

I think this GIF is from Half-Life 2



Frame buffer
● Use glGenFrameBuffers() to generate as many 

frame buffer objects as you need
● Attach a texture to your frame buffer object so 

you can render to it
● Bind this texture when you want to use the data 

saved in the texture.

I think this GIF is from Half-Life 2



Frame buffer
 

Source: https://learnopengl.com/Advanced-OpenGL/Framebuffers

https://learnopengl.com/Advanced-OpenGL/Framebuffers


Frame buffer
 

Source: https://learnopengl.com/Advanced-OpenGL/Framebuffers

https://learnopengl.com/Advanced-OpenGL/Framebuffers


Frame buffer
● What if we want RGB and depth (or other) images at the same time?

○ For RGB and depth, bind 2 textures.
○ Use 2 FBO and 2 render passes.
○ glReadPixel(). (Slow)
○ glBlitFramebuffers().



Technical Features
● Some technical features today

○ Toon/Cel shading
○ Particle effect
○ Frame buffer
○ Collision detection



Collision detection
● Bounding spheres

● Bounding boxes

● Arbitrary geometry



Spheres
● Sphere vs. Sphere

○ Check the distance between the centers of the spheres
■ If the distance is greater than the sum of the spheres’ radii, then they don’t intersect
■ Otherwise, they intersect

A
B



Boxes
● Boxes vs. Sphere: Just check the distance from the sphere’s center to each 

of the box’s faces
○ View Frustum Culling

● Boxes vs. Boxes: 
○ Axis-aligned Bounding Boxes (AABB): 

■ Check overlapping axes
■ 2D example

○ Oriented Bounding Boxes (OBB): Intersection test between triangles 
■ Each box only has 12 triangles, so it isn’t too hard or time consuming to test 
■ You’ll need this anyways if you’re doing collision detection with arbitrary geometry



Arbitrary geometry
● An intersection test has to be done with every triangle of the 3D object

○ This can be very slow and inefficient if the object has a lot of triangles (for example, the 
dragon obj file has 871,168 triangles)

● Idea: Break object into multiple sections and only do intersection tests on 
triangles in a small section instead of whole object

○ Use small bounding spheres or boxes inside the object
○ Check if the intersection returns positive on a sphere or box

■ If no intersection, check next box or sphere
■ If intersection, check for all triangles in box or sphere

● May need scene graphs for recursive intersection tests
○ Good thing you already made a scene graph in project 3
○ You likely need to manually define sizes of the boxes/spheres



Testing triangles
● Once you have determined there is an intersection in the small bounding 

boxes/spheres, perform intersection tests with the triangles inside them
○ This requires you to iterate through the triangles in both objects and testing for 

intersection on each pair of triangles

● Only 2 possible cases can happen
○ 2 edges of a triangle intersects the other
○ 1 edge of each triangle intersects the other



● How to do intersection test
○ Determine the planes that each triangle lies on
○ Check if each line segment in a triangle intersects with the other plane

■ If yes, check if the intersection point is within the other triangle

● This can be done relatively quickly since 2 triangles yield a total of 6 test 
iterations

● We recommend checking one of the following tutorials
○ http://www.applet-magic.com/trintersection.htm
○ http://knight.temple.edu/~lakaemper/courses/cis350_2004/etc/moeller_triangle.pdf
○ Please be careful of copying + pasting code - these algorithms weren’t written 

exclusively for an OpenGL context
○ http://web.mst.edu/~chaman/home/pubs/2015WimoTriangleTrianglePublished.pdf

● More information: Google!!!

The intersection test

http://www.applet-magic.com/trintersection.htm
http://knight.temple.edu/~lakaemper/courses/cis350_2004/etc/moeller_triangle.pdf
http://web.mst.edu/~chaman/home/pubs/2015WimoTriangleTrianglePublished.pdf


● Q&A

Midterm 2



Wrap up
● We may talk about more techniques next week

● Enjoy your Thanksgiving break!


