
CSE 167:
Introduction to Computer Graphics
Discussion 3

TA: Jimmy Ye ft. Tutor: Kevin Huang
University of California, San Diego

Fall Quarter 2018

Announcements
▶ Project 2 due this Friday at 2pm
▶ Grading in CSE basement labs B260 and B270
▶ This time using Autograder (no whiteboard)
▶ Upload code to TritonEd by 2pm

2

Overview
▶ Lecture review
▶ Overview of next lecture (lights) for HW2
▶ Common errors
▶ Implementation hints

3

Diffuse Reflection
▶ Given
▶ Unit (normalized!) surface normal n
▶ Unit (normalized!) light direction L
▶ Material diffuse reflectance (material color) kd
▶ Light color (intensity) cl

▶ Diffuse color cd is:

Proportional to cosine
between normal and light

4

Diffuse Reflection
Notes
▶ Parameters kd, cl are r,g,b vectors
▶ Need to compute r,g,b values of diffuse color cd

separately
▶ Parameters in this model have no precise physical

meaning
▶ cl: strength, color of light source
▶ kd: fraction of reflected light, material color

5

Phong Shading Model
▶ Developed by Bui Tuong Phong in1973
▶ Specular reflectance coefficient ks
▶ Phong exponent p
▶ Greater p means smaller (sharper) highlight

6

Complete Phong Shading Model
▶ Phong model supports multiple light sources
▶ All light colors c and material coefficients k are

3-component vectors for red, green, blue

7

Image by Brad Smith

Lights

- Quick overview just for the basic ideas +
equations needed for the lighting portion of HW2

- More in the next lecture

Light Sources
▶ Real light sources can have complex properties

▶ We use simplified model for real-time rendering

9

Types of Light Sources
▶ At each point on surfaces we need to know
▶ Direction of incoming light (the L vector)
▶ Intensity of incoming light (the cl values)

▶ Three light types:
▶ Directional: from a specific direction
▶ Point light: from a specific point
▶ Spotlight: from a specific point with intensity that depends

on direction

10

Point Lights
▶ Similar to light bulbs
▶ Infinitely small point radiates light equally in all directions

11

Point Light Math

cl
v

p
csrc

cl
v

Light source

Receiving surface

12

At any point v on the
surface:

Attenuation:

Light Attenuation
▶ Adding constant factor k to denominator for better

control
▶ Quadratic attenuation: k*(p-v)2

▶ Linear attenuation (HW2) : k*(p-v)
▶ Constant attenuation: k

13

▶
Spotlights

14

Spotlights

Light source

Receiving surface

15

Vertex Shader

16

#version 150

// We don’t need to use textures for HW2 (but we will for HW3)
uniform mat4 camera;
uniform mat4 model;

in vec3 vert;
in vec2 vertTexCoord;
in vec3 vertNormal;

out vec3 fragVert;
out vec2 fragTexCoord;
out vec3 fragNormal;

void main()
{
 // Pass some variables to the fragment shader
 fragTexCoord = vertTexCoord;
 fragNormal = vertNormal;
 fragVert = vert;

 // Apply all matrix transformations to vert
 gl_Position = camera * model * vec4(vert, 1);
}

Source: Tom Dallling’s OpenGL Tutorial

Fragment Shader for Diffuse Reflection

17

#version 150

uniform mat4 model;
uniform sampler2D tex;

uniform struct Light
{
 vec4 position; // if w component=0 it’s directional
 vec3 intensities; // a.k.a the color of the light
 float attenuation; // only needed for point and spotlights
 float ambientCoefficient;
 float coneAngle; // only needed for spotlights
 vec3 coneDirection; // only needed for spotlights
 float exponent; // cosine exponent for how light tapers off
} light;

in vec2 fragTexCoord;
in vec3 fragNormal;
in vec3 fragVert;

out vec4 finalColor;

Source: Tom Dallling’s OpenGL Tutorial

Fragment Shader Part 2

18

void main()
{
 // calculate normal in world coordinates
 mat3 normalMatrix = transpose(inverse(mat3(model)));
 vec3 normal = normalize(normalMatrix * fragNormal);

 // calculate the location of this fragment (pixel) in world coordinates
 vec3 fragPosition = vec3(model * vec4(fragVert, 1));

 // calculate the vector from this pixels surface to the light source
 vec3 surfaceToLight = light.position - fragPosition;

 // calculate the cosine of the angle of incidence
 float brightness = dot(normal, surfaceToLight) / (length(surfaceToLight) * length(normal));
 brightness = clamp(brightness, 0, 1);

 // calculate final color of the pixel, based on:
 // 1. The angle of incidence: brightness
 // 2. The color/intensities of the light: light.intensities
 // 3. The texture and texture coord: texture(tex, fragTexCoord)
 vec4 surfaceColor = texture(tex, fragTexCoord);
 finalColor = vec4(brightness * light.intensities * surfaceColor.rgb, surfaceColor.a);
}

Source: Tom Dallling’s OpenGL Tutorial

Common Errors
▶ https://piazza.com/class/jmi7l0j71xg77u?cid=98
▶ Include shaders in working directory
▶ OBJ files are 1-indexed, OpenGL is 0-indexed
▶ Normal coloring needs to be moved from your C++

code to your shader code
▶ glm::length(x), not x.length()
▶ Initialize OBJObjects in Window::initialize_objects()
▶ Correct the axis of rotation for trackball if applying a

series of rotations

19

https://www.google.com/url?q=https://piazza.com/class/jmi7l0j71xg77u?cid%3D98&sa=D&ust=1539821480311000&usg=AFQjCNHQs2_92lau8_OEwFD_KLH5LJEvKg

