CSE 190: 3D User Interaction

Lecture \#10: Travel cont'd Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment \#3 due Friday, February $22^{\text {nd }}$ at 1 pm in Sequoia lab 142
- Grading starts at 12:30
- Reminder: paper presentations
- Next lecture:
- Thinh
- Suman
- Stephen

Paper Presentations

- Today:
- Velu: Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects
- Haronid: D-Flow: Immersive Virtual Reality and Real-Time Feedback for Rehabilitation
- Amell: Lightweight Palm and Finger Tracking for Real-Time 3D Gesture Control

Navigation

Travel - Motor Component

Alternate Technique Classification User Control Level

Travel Techniques

- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques

Physical Locomotion Techniques

- Walking techniques
- Large-scale tracking
- Walking in place
- Treadmills
- single-direction with steering (Gait Master)
o omni-directional
- Bicycles
- Other physical motion techniques
- Magic carpet

- Disney's river raft ride

Omni-Directional Treadmill

o Video:

- http://www.youtube.com/watch?v=BQwlt sgrJOs

Gait Master

- Video
- http://www.youtube.com/watch?v=RDDH 1 iqoDzU

String Walker

- Video from Emerging Technologies, SIGGRAPH 2007
- http://www.youtube.com/watch?v=hyLKjyL -Dw8

Steering Techniques

- Continuous specification of direction of motion
- gaze-directed
- pointing
- torso-directed
- camera-in-hand
- physical device (steering wheel, flight stick)

Steering - Gaze-Directed

- Move viewpoint in direction of "gaze"
- Gaze direction determined from head tracker
- Cognitively simple
- Doesn't allow user to look to the side while traveling

Steering - Gaze-Directed Implementation

- Each frame while moving:
- Get head tracker information
- Transform vector $[0,1,0]$ in head coordinates to $v=[x, y, z]$ in world coordinates
- Normalize vector
- Multiply by speed
- Translate viewpoint by this amount in world coordinates

Pointing Technique

- Also a steering technique
- Use hand tracker instead of head tracker
- Slightly more complex, cognitively
- Allows travel and gaze in different directions - good for relative motion

Pointing Implementation

- Each frame while moving:
- Get hand tracker information
- Do exactly the same calculations as in gaze-directed steering, only use hand coordinates instead of head coordinates

Route-Planning

- One-time specification of path
- draw path
- points along path
- manipulating user representation

Target-Based Techniques

- Discrete specification of goal
- point at object
- choose from list
- enter coordinates
- Map/WIM-based target specification

Map-Based Travel Techniques

- User represented by icon on 2D map
- Drag icon with stylus to new location on map
o When released, viewpoint animated smoothly to new location

Map-based Travel Implementation

- Must know
- map scale relative to world: s
- location of world origin in map CS: $0=\left(x_{0}, y_{0}, z_{0}\right)$
- On button press:
- if stylus intersects user icon, then each frame:
- get stylus position in map CS: (x, y, z)
- move icon to ($x, 0, z$) in map CS

Map-Based Travel Implementation (cont.)

- On button release:
- Get stylus position in map CS: (x, y, z)
- Move icon to ($x, 0, z$) in map CS
- Desired viewpoint: $p_{v}=\left(x_{v}, y_{v}, z_{v}\right)$ where
- $x_{v}=\left(x-x_{0}\right) / s$
- $z_{v}=\left(z-z_{0}\right) / s$
- $y_{v}=$ desired height at $\left(x_{v}, y_{v}\right)$
- Move vector: $m=\left(x_{v}-x_{\text {curr }}, y_{v}-y_{\text {curr }} z_{v}-z_{\text {curr }}\right)^{*}$ (velocity/distance)
- Each frame for (distance/velocity) frames: translate viewpoint by m

Manual Manipulation Grabbing the Air Technique

- Use hand gestures to move yourself through the world
- Metaphor of pulling a rope
- Often a 2-handed technique
- May be implemented using Pinch Gloves

Grabbing The Air Implementation (One-handed)
 - On pinch:

- Obtain initial hand position in world CS: $\left(x_{h}, y_{n}, z_{n}\right)$
o Each frame until release:
- Obtain current hand position in world CS: $\left(x^{\prime} h_{1} y^{\prime} h^{\prime}\right.$ z^{\prime})
- Hand motion vector: $m=\left(\left(x_{h}{ }_{h}, y^{\prime}{ }_{h}, z^{\prime}\right)-\left(x_{h}, y_{h}, z_{n}\right)\right)$
- Translate world by m (or viewpoint by $-m$)
- $\left(x_{h}, y_{h}, z_{h}\right)=\left(x^{\prime}{ }_{h}, y_{h}^{\prime}, z^{\prime}{ }_{h}\right)$
- Cannot simply attach objects to hand - do not want to match hand rotations

Viewpoint Orientation Techniques

- Head tracking
- Orbital viewing
- Non-isomorphic rotation
- Virtual sphere

