CSE 190: 3D User Interaction

Lecture #10: Travel cont'd Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment #3 due Friday, February 22nd at 1pm in Sequoia lab 142
 - Grading starts at 12:30
- Reminder: paper presentations
 - Next lecture:
 - o Thinh
 - Suman
 - Stephen

Paper Presentations

• Today:

- Velu: Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects
- Haronid: D-Flow: Immersive Virtual Reality and Real-Time Feedback for Rehabilitation
- Amell: Lightweight Palm and Finger Tracking for Real-Time 3D Gesture Control

CSE190, Winter 201

4

Navigation

Travel – Motor Component

Alternate Technique Classification – User Control Level

Travel Techniques

- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques

Physical Locomotion Techniques

- Walking techniques
 - Large-scale tracking
 - Walking in place
- Treadmills
 - single-direction with steering (Gait Master)
 - o omni-directional
- Bicycles
- Other physical motion techniques
 - Magic carpet
 - Disney's river raft ride

Large Scale Tracking

Omni-Directional Treadmill

• Video:

 http://www.youtube.com/watch?v=BQw1t sgrJOs

Gait Master

• Video

• http://www.youtube.com/watch?v=RDDH1 iqoDzU

String Walker

- Video from Emerging Technologies, SIGGRAPH 2007
 - http://www.youtube.com/watch?v=hyLKjyL
 -Dw8

Steering Techniques

- Continuous specification of direction of motion
 - o gaze-directed
 - pointing
 - o torso-directed
 - o camera-in-hand
 - physical device (steering wheel, flight stick)

Steering – Gaze-Directed

- Move viewpoint in direction of "gaze"
- Gaze direction determined from head tracker
- Cognitively simple
- Doesn't allow user to look to the side while traveling

Steering – Gaze-Directed Implementation

• Each frame while moving:

- Get head tracker information
- Transform vector [0,1,0] in head coordinates to v=[x,y,z] in world coordinates
- Normalize vector
- Multiply by speed
- Translate viewpoint by this amount in world coordinates

Pointing Technique

- Also a steering technique
- Use hand tracker instead of head tracker
- Slightly more complex, cognitively
- Allows travel and gaze in different directions good for relative motion

Pointing Implementation

• Each frame while moving:

- Get hand tracker information
- Do exactly the same calculations as in gaze-directed steering, only use hand coordinates instead of head coordinates

Route-Planning

- One-time specification of path
 - o draw path
 - points along path
 - manipulating user representation

Target-Based Techniques

- Discrete specification of goal
 - o point at object
 - o choose from list
 - enter coordinates
- Map/WIM-based target specification

Map-Based Travel Techniques

- User represented by icon on 2D map
- Drag icon with stylus to new location on map
- When released, viewpoint animated smoothly to new location

Map-based Travel Implementation

Must know

- map scale relative to world: s
- location of world origin in map CS: $o=(x_o, y_o, z_o)$

• On button press:

- if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to (x, 0, z) in map CS

Map-Based Travel Implementation (cont.)

• On button release:

- Get stylus position in map CS: (x, y, z)
- Move icon to (x, 0, z) in map CS
- Desired viewpoint: $p_v = (x_{v'}, y_{v'}, z_v)$ where

•
$$x_v = (x - x_o)/s$$

$$o z_v = (z - z_o)/s$$

• $y_v = desired height at (x_v, y_v)$

- Move vector: $m = (x_v x_{curr}, y_v y_{curr}, z_v z_{curr}) * (velocity/distance)$
- Each frame for (distance/velocity) frames: translate viewpoint by m

Manual Manipulation – Grabbing the Air Technique

- Use hand gestures to move yourself through the world
- Metaphor of pulling a rope
- Often a 2-handed technique
- May be implemented using Pinch Gloves

Grabbing The Air Implementation (One-handed)

• On pinch:

- Obtain initial hand position in world CS: (x_h, y_h, z_h)
- Each frame until release:
 - Obtain current hand position in world CS: (x'_h, y'_h, z'_h)
 - Hand motion vector: $m = ((x'_{h'}, y'_{h'}, z'_{h}) (x_{h'}, y_{h'}, z_{h}))$
 - Translate world by m (or viewpoint by -m)
 - $(x_h, y_h, z_h) = (x'_h, y'_h, z'_h)$
- Cannot simply attach objects to hand do not want to match hand rotations

Viewpoint Orientation Techniques

- Head tracking
- Orbital viewing
- Non-isomorphic rotation
- Virtual sphere