CSE 167
Discussion #2

Nosrasteratu




Rasterizing points

e Let's say the point p is a point in 3d space, represented
by the vector:

e \We want to draw this on screen (Rasterization)
o 3d scene description — 2d image



Rasterizing points

e Two issues though!

o Our screen is a 2d coordinate system, and the point
Is in 3d!
o Where in the screen is (2.5, 1.5, -1)7?
e \Ve have a mismatch in coordinate systems.

pP=D-P-C' - M-p



Coordinate Systems

e Object space: What we call our original 3d coordinate system
?77?
?77?
2?77

e Image space: The 2d coordinate system of the display window



Image Space

e X0 and x1 are 0 and window width respectively
e Y0 and y1 are 0 and window height respectively

e Ul
0 Y1—Y0 0 Yyo+uy1
D(x(Jaxlayanl) — 0 200 1.0 @
2.0 2.0
0 0 0 1 |




Coordinate Systems

e Object space: What we call our original 3d coordinate system

e World space: After transforming (translation, scaling, rotation)
?77?

?7?7?
e Image space: The 2d coordinate system of the display window

=D -M-p



World Space

e Rotation then translation (do it this way)

1 0 0 tx Tk Yol Ze® O
010 ty o [TV Yoy zey 0
0 0 1 tz TeZ Ye# Zez 0
000 1 0 0 0 1

(I*zez+0x2,.y+0x2,2+txx0) (1*yez+0xy,y+0xy,.z2+ty*x0) (I1xz.2+0%2,.y+0xz2,.2+tz%0) (1*x0+0%x0+0x0+t.x*1)
(O*xzex+1xx0y+0xz0z+txx0) (Oxyex + 15y, y+0xy,z2+tyx0) (Okzex+1x2z.y+0xz.02+82%0) (0x0+1x04+0%x0+tyx1)
(Oxzer+0xzey+lsxez+tax0) 0xyez+0%y.y+1lxy.z+tyx0) (Oxzex+0xz.y+1szez+tzx0) (0%x04+0%x0+1%x04+t.2x1)
O*2ex+0x2y+0x202+1%0) Oy +0xyey +0xyez2+1%0) (0xzex+0x2.y+0xz2+1%0)  (0x0+0%x0+0%x0+1x%1)

Tek Yok Ze.T T.T
TeY Yoy ZeY Ly
TeZ Ye# 2o .2z
0 0 0 1



World Space

e J[ranslation then rotation

Te Yo 2e.x 0 1 0 0 tx
Ty Yoy 2oy 0O . 01 0 ty
TeZ Ye# Zez 0 0 01 tz

0 0 0 1 000 1

(e 14+ Y0+ 2,2%04+0%0) (vozx04+y.cxl+2,2%04+0%0) (zox*04+y.2%*0+2,.2%14+0%x0) (rprxtr+y.cxty+z.rxt.z+0x1)

(Tey* 1+ yy*x 0+ 2.y *x0+0%0) (2ey*x0+y.y*x1+2.y%04+0%0) (2oy*x04+yey*0+ 2z.y*x1+0%0) (zoy*t.x+y.y*xt.y+ zey*xt.z+0x%1)

(Te-2x 14+ Y2404+ 2,240+ 0%0) (o204 yez%l+2,2%04+0%0) (2ez2%0+yezx0+2.2%140%0) (Tezstx+ Yozt Y+ 2e2%t.2+0x1)
(0x1+0%x0+0%x04+1x0) (0x0+0x14+0%x0+1x%0) (0x04+0%x0+0%x1+1x0) Oxtx+0xty+0*xt.z+1x1)

Tl Yoo 20T (T ¥ 0.2 + Yok % LY + 200 x £.2)

Ty Yoy 2oy (Tey*t.x+yeyxty—+ zo.yxt.2)

TeZ Yoo 2oz (T2 6T+ Yoz xty + 202 x t.2)
0 0 0 1



Model Matrix

e Usually denoted M, for Model

e \We've defined the member variable toWorld for both
cube and OBJODbject.

et :sping 3

e What's wrong with this method?
=D -M-p



Coordinate Systems

e Object space: What we call our original 3d coordinate system
e \World space: After transforming (translation, scaling, rotation)

e Camera space: How the world looks, centered around camera
?7?7?

e Image space: The 2d coordinate system of the display window

p=D-C'-M-p



Camera Space

» Construct from center of projection e, look at d, up-
vector up:

up

Camera ﬁﬂ

coordinates e
d

@

World coordinates



Inverse Camera Matrix

e We're actually interested in finding the inverse ¢!

(L. ToYy Tez O 1 0 0 —ex
4 o7 | YeT Yoy Yoz O 1 101 0 —euy
== 2y Ze.z 0 Po=100 01 —ez
0 0 0 1] 0 0 0 I

Cl'=T*R‘'=R" T




Inverse Camera Matrix

e How did we do itin openGL’?

O Do we have to construct this manually?

e There’'s a glm function that does this for us!

C inverse = glm::lookAt (e, d,

=D -C'-M-p

up)



Coordinate Systems

Object space: What we call our original 3d coordinate system
World space: After transforming (translation, scaling, rotation)
Camera space: How the world looks, centered around camera
Projection space: How the world looks with perspective
Image space: The 2d coordinate system of the display window

pP=D-P-C' - M-p



Projection Space

e Perspective projection matrix(P) will create perspective
transform, and put our Camera Space into the canonical
view volume

1.0
aspectxtan( FOV/2.0) 0 0 0
0 1.0 0 0
PpeTSP(FOV7 aSpeCtv near, far) — tan(FOV/2.0) near+far  2.0xnearxfar
0 0 near—far near— far
] 0 0 —1 0|




Perspective Projection

How did we do it in openGL?

o D - we e tocostrut thiaIIy?
e There’'s a glm function that does this for us!

P = glm: :perspective(glm::radians (60.0f),
(float) width / (float) height,
1.0£, 1000.0f);

pP=D-P-C' - M-p



Interactive Graphics

e \When/where do we change these for project 17

o Object: Doesn’t change! Inherent to object
o World: When the object transforms (e.g. cube’s spin, keyboard input)
o Camera: We're not moving the camera for this project
o Projection: What happens when user changes the aspect ratio?
o Image: What happens when the viewport becomes larger or smaller?
aspect*taizv(oFOV/ZO) 0 0 0
0 1 E— 0 0
PPSTSP(FOM aspect,near, fCLT) = 0 tan(F(SV/Q.O) near+far  2.0xnearx far
0 0 neaiaf aaaaaa 6 far . 12_0x0 0 0 550;‘651
O - yo+u1
D($07x17y07y1) = 0 200 1.0 ﬁ
2.0 2.0



e \What happens when we resize the window?
o aspect, x/, x0, y1, y0 change
o Have to update P and D.

e \What about pixel buffer?

1.0
aspectxtan(FOV/2.0) 100 0 0
0 A oA 0 0
Poersp(FOV, aspect, near, far) = 0 tan(F%V/Q'O) near+far  2.0xnearx far
near—far  near —far . +
0 0 —1 0 T1—XQ O ro+2x1




e Resizing should change the total number of pixels
o We provide code for this

resizeCallback(GLFWwindow®

window _width =

window_height =
elete[] pixels;

pixels = new float[window_wi indow_height * 3];




Some Code Tips

e OpenGL expects column major, not row major.
e How do we end up drawing to the buffer?
I ixels(window widt wind . . .




Some Code Tips

e Manually changing the pixels array is tedious
0 drawPoint (int x, int vy, float r, float g, float b)
m At the index [X][y] of our pixel buffer, let’s set our colortober, g, b
m 1int offset = y*width*3 + x*3;
pixels[offset] = r;
pixels[offset+l] = g;
pixels[offset+2] = b;



Some Code Tips

Foo bar = Foo();

Foo constructor called

Foo object created

Data copied over from temporary
Foo() object into bar

~Foo() destructor called on
temporary Foo object

Foo *bar = new Foo();

e Foo constructor called

e Foo object created

e Address of Foo() object that was
created is saved in bar



Some Code Tips

e DO NOT load your OBJ files from disk every frame
e How can we efficiently implement switching between

OBJ models without having a series of if statements?

o What if we had a Drawable* and we change what it points to whenever
we need to switch between models?

e Multiple OBJ objects?



