CSE 167 Discussion \#2

Nosrasteratu

Rasterizing points

- Let's say the point p is a point in 3d space, represented by the vector:

$$
\left[\begin{array}{c}
2.5 \\
1.5 \\
-1 \\
1
\end{array}\right]
$$

- We want to draw this on screen (Rasterization)
- 3d scene description \rightarrow 2d image

Rasterizing points

- Two issues though!
- Our screen is a 2 d coordinate system, and the point is in 3d!
- Where in the screen is $(2.5,1.5,-1)$?
- We have a mismatch in coordinate systems.

$$
p^{\prime}=D \cdot P \cdot C^{-1} \cdot M \cdot p
$$

Coordinate Systems

- Object space: What we call our original 3d coordinate system ???
???
???
- Image space: The 2d coordinate system of the display window

$$
p^{\prime}=D \cdot p
$$

Image Space

- $x 0$ and $x 1$ are 0 and window width respectively
- y0 and y1 are 0 and window height respectively

$$
\begin{gathered}
D\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left[\begin{array}{cccc}
\frac{x_{1}-x_{0}}{2.0} & 0 & 0 & \frac{x_{0}+x_{1}}{2} \\
0 & \frac{y_{1}-y_{0}}{2.0} & 0 & \frac{y_{0}+y_{1}}{2+y_{1}} \\
0 & 0 & \frac{1.0}{2.0} & \frac{1.0}{2.0} \\
0 & 0 & 0 & 1
\end{array}\right] \\
p^{\prime}=D \cdot p
\end{gathered}
$$

Coordinate Systems

- Object space: What we call our original 3d coordinate system
- World space: After transforming (translation, scaling, rotation) ???
???
- Image space: The 2d coordinate system of the display window

$$
p^{\prime}=D \cdot M \cdot p
$$

World Space

- Rotation then translation (do it this way)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t \cdot x \\
0 & 1 & 0 & t \cdot y \\
0 & 0 & 1 & t \cdot z \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
x_{c} \cdot x & y_{c} \cdot x & z_{c} \cdot x & 0 \\
x_{c} \cdot y & y_{c} \cdot y & z_{c} \cdot y & 0 \\
x_{c} \cdot z & y_{c} \cdot z & z_{c} \cdot z & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\left(1 * x_{c} \cdot x+0 * x_{c} \cdot y+0 * x_{c} \cdot z+t \cdot x * 0\right) & \left(1 * y_{c} \cdot x+0 * y_{c} \cdot y+0 * y_{c} \cdot z+t \cdot y * 0\right) & \left(1 * z_{c} \cdot x+0 * z_{c} \cdot y+0 * z_{c} \cdot z+t \cdot z * 0\right) & (1 * 0+0 * 0+0 * 0+t \cdot x * 1) \\
\left(0 * x_{c} \cdot x+1 * x_{c} \cdot y+0 * x_{c} \cdot z+t \cdot x * 0\right) & \left(0 * y_{c} \cdot x+1 * y_{c} \cdot y+0 * y_{c} \cdot z+t \cdot y * 0\right) & \left(0 * z_{c} \cdot x+1 * z_{c} \cdot y+0 * z_{c} \cdot z+t \cdot z * 0\right) & (0 * 0+1 * 0+0 * 0+t \cdot y * 1) \\
\left(0 * x_{c} \cdot x+0 * x_{c} \cdot y+1 * x_{c} \cdot z+t \cdot x * 0\right) & \left(0 * y_{c} \cdot x+0 * y_{c} \cdot y+1 * y_{c} \cdot z+t \cdot y * 0\right) & \left(0 * z_{c} \cdot x+0 * z_{c} \cdot y+1 * z_{c} \cdot z+t \cdot z * 0\right) & (0 * 0+0 * 0+1 * 0+t \cdot z * 1) \\
\left(0 * x_{c} \cdot x+0 * x_{c} \cdot y+0 * x_{c} \cdot z+1 * 0\right) & \left(0 * y_{c} \cdot x+0 * y_{c} \cdot y+0 * y_{c} \cdot z+1 * 0\right) & \left(0 * z_{c} \cdot x+0 * z_{c} \cdot y+0 * z_{c} \cdot z+1 * 0\right) & (0 * 0+0 * 0+0 * 0+1 * 1)
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
x_{c} \cdot x & y_{c} \cdot x & z_{c} \cdot x & t \cdot x \\
x_{c} \cdot y & y_{c} \cdot y & z_{c} \cdot y & t \cdot y \\
x_{\cdot} \cdot z & y_{c} \cdot z & z_{c} \cdot z & t \cdot z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

World Space

- Translation then rotation

$$
\left[\begin{array}{cccc}
x_{c} \cdot x & y_{c} \cdot x & z_{c} \cdot x & 0 \\
x_{c} \cdot y & y_{c} \cdot y & z_{c} \cdot y & 0 \\
x_{c} \cdot z & y_{c} \cdot z & z_{c} \cdot z & 0 \\
0 & 0 & 0 & 1
\end{array}\right] *\left[\begin{array}{cccc}
1 & 0 & 0 & t \cdot x \\
0 & 1 & 0 & t \cdot y \\
0 & 0 & 1 & t \cdot z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\left(x_{c} \cdot x * 1+y_{c} \cdot x * 0+z_{c} \cdot x * 0+0 * 0\right) & \left(x_{c} \cdot x * 0+y_{c} \cdot x * 1+z_{c} \cdot x * 0+0 * 0\right) & \left(x_{c} \cdot x * 0+y_{c} \cdot x * 0+z_{c} \cdot x * 1+0 * 0\right) & \left(x_{c} \cdot x * t \cdot x+y_{c} \cdot x * t \cdot y+z_{c} \cdot x * t \cdot z+0 * 1\right) \\
\left(x_{c} \cdot y * 1+y_{c} \cdot y * 0+z_{c} \cdot y * 0+0 * 0\right) & \left(x_{c} \cdot y * 0+y_{c} \cdot y * 1+z_{c} \cdot y * 0+0 * 0\right) & \left(x_{c} \cdot y * 0+y_{c} \cdot y * 0+z_{c} \cdot y * 1+0 * 0\right) & \left(x_{c} \cdot y * t \cdot x+y_{c} \cdot y * t \cdot y+z_{c} \cdot y * t \cdot z+0 * 1\right) \\
\left(x_{c} \cdot z * 1+y_{c} \cdot z * 0+z_{c} \cdot z * 0+0 * 0\right) & \left(x_{c} \cdot z * 0+y_{c} \cdot z * 1+z_{c} \cdot z * 0+0 * 0\right) & \left(x_{c} \cdot z * 0+y_{c} \cdot z * 0+z_{c} \cdot z * 1+0 * 0\right) & \left(x_{c} \cdot z * t \cdot x+y_{c} \cdot z * t \cdot y+z_{c} \cdot z * t \cdot z+0 * 1\right) \\
(0 * 1+0 * 0+0 * 0+1 * 0) & (0 * 0+0 * 1+0 * 0+1 * 0) & (0 * 0+0 * 0+0 * 1+1 * 0) & (0 * t \cdot x+0 * t \cdot y+0 * t \cdot z+1 * 1)
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
x_{c} \cdot x & y_{c} \cdot x & z_{c} \cdot x & \left(x_{c} \cdot x * t \cdot x+y_{c} \cdot x * t \cdot y+z_{c} \cdot x * t \cdot z\right) \\
x_{c} \cdot y & y_{c} \cdot y & z_{c} \cdot y & \left(x_{c} \cdot y * t \cdot x+y_{c} \cdot y * t \cdot y+z_{c} \cdot y * t \cdot z\right) \\
x_{\cdot} \cdot z & y_{c} \cdot z & z_{c} \cdot z & \left(x_{c} \cdot z * t \cdot x+y_{c} \cdot z * t \cdot y+z_{c} \cdot z * t \cdot z\right) \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Model Matrix

- Usually denoted M, for Model
- We've defined the member variable toWorld for both cube and OBJObject.

```
Gvoid Cube::spin(float deg)
this->angle += deg;
    if (this->angle > 360.0f || this->angle < -360.0f) this->angle = 0.0f;
    // This creates the matrix to rotate the cube
    this->toWorld = glm::rotate(glm::mat4(1.0f), this->angle / 180.0f * glm::pi<float>(), glm::vec3(0.0f, 1.0f, 0.0f));
```

- What's wrong with this method?

$$
p^{\prime}=D \cdot M \cdot p
$$

Coordinate Systems

- Object space: What we call our original 3d coordinate system
- World space: After transforming (translation, scaling, rotation)
- Camera space: How the world looks, centered around camera ???
- Image space: The 2d coordinate system of the display window

$$
p^{\prime}=D \cdot C^{-1} \cdot M \cdot p
$$

Camera Space

- Construct from center of projection e, look at d, upvector up:

Camera coordinates

Inverse Camera Matrix

- We're actually interested in finding the inverse C^{-1}

$$
\begin{aligned}
R^{-1}=R^{T}= & {\left[\begin{array}{cccc}
x_{c} \cdot x & x_{c} \cdot y & x_{c} \cdot z & 0 \\
y_{c} \cdot x & y_{c} \cdot y & y_{c} \cdot z & 0 \\
z_{c} \cdot x & z_{c} \cdot y & z_{c} \cdot z & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e \cdot x \\
0 & 1 & 0 & -e \cdot y \\
0 & 0 & 1 & -e . z \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& C^{-1}=(T * R)^{-1}=R^{-1} * T^{-1}
\end{aligned}
$$

Inverse Camera Matrix

- How did we do it in openGL?

```
Th Hove camera wack 20 units so that it looks at the orgin (or olse It's in the orstio glTranslatef( \(0,0,-20\) );
```

- Do we have to construct this manually?
- There's a glm function that does this for us!
C_inverse = glm::lookAt(e, d, up)

$$
p^{\prime}=D \cdot C^{-1} \cdot M \cdot p
$$

Coordinate Systems

- Object space: What we call our original 3d coordinate system
- World space: After transforming (translation, scaling, rotation)
- Camera space: How the world looks, centered around camera
- Projection space: How the world looks with perspective
- Image space: The 2d coordinate system of the display window

$$
p^{\prime}=D \cdot P \cdot C^{-1} \cdot M \cdot p
$$

Projection Space

- Perspective projection matrix (P) will create perspective transform, and put our Camera Space into the canonical view volume

$$
P_{\text {persp }}(\text { FOV , aspect, near, far })=\left[\begin{array}{cccc}
\frac{1.0}{\operatorname{aspect*tan(FOV/2.0)}} & 0 & 0 & 0 \\
0 & \frac{1.0}{\tan (F O V / 2.0)} & 0 & 0 \\
0 & 0 & \frac{\text { near }+ \text { far }}{\text { near-far }} & \frac{2.0 * \text { near } * \text { far }}{\text { near-far }} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Perspective Projection

- How did we do it in openGL?

set the perspection
 gluPerspective(60.0, double(width) / (double)height, 1.0, 1000.0);

- Do we have to construct this manually?
- There's a glm function that does this for us!
$\mathrm{P}=$ glm::perspective(glm::radians(60.0f),
(float) width / (float) height,
1.0f, $1000.0 f) ;$

$$
p^{\prime}=D \cdot P \cdot C^{-1} \cdot M \cdot p
$$

Interactive Graphics

- When/where do we change these for project 1 ?
- Object: Doesn't change! Inherent to object
- World: When the object transforms (e.g. cube's spin, keyboard input)
- Camera: We're not moving the camera for this project
- Projection: What happens when user changes the aspect ratio?
- Image: What happens when the viewport becomes larger or smaller?

Resizing

- What happens when we resize the window?
- aspect, $x 1, x 0, y 1, y 0$ change
- Have to update P and D.
- What about pixel buffer?

Resizing

- Resizing should change the total number of pixels - We provide code for this

```
T Called whenever the window size changes
Goid resizeCallback(GLFWwindow* window, int width, int height)
{
    window_width = width;
    window_height = height;
    delete[] pixels;
    pixels = new float[window_width * window_height * 3];
}
```


Some Code Tips

- OpenGL expects column major, not row major. How do we end up drawing to the buffer?

```
V glDrawPixels writes a block of pixels to the framebuffer
g1DrawPixels(window_width, window_height, GL_RGB, GL_FLOAT, pixels);
```


Some Code Tips

- Manually changing the pixels array is tedious
o drawPoint(int x, int y, float $r, f l o a t ~ g, ~ f l o a t ~ b) ~$
- At the index $[x][y]$ of our pixel buffer, let's set our color to be r, g, b

■ int offset $=y^{*} w i d t h * 3+x * 3$;

$$
\begin{array}{ll}
\text { pixels }[\text { offset }] & =r ; \\
\text { pixels }[\text { offset }+1] & =g ; \\
\text { pixels }[\text { offset }+2] & =\mathrm{b}
\end{array}
$$

Some Code Tips

Foo bar = Foo();

- Foo constructor called
- Foo object created
- Data copied over from temporary Foo() object into bar
- ~Foo() destructor called on temporary Foo object

Foo *bar = new Foo();

- Foo constructor called
- Foo object created
- Address of Foo() object that was created is saved in bar

Some Code Tips

- DO NOT load your OBJ files from disk every frame
- How can we efficiently implement switching between OBJ models without having a series of if statements?
- What if we had a Drawable* and we change what it points to whenever we need to switch between models?
- Multiple OBJ objects?

