CSE 167
Discussion #2

Nosrasteratu




Rasterizing points

e Let's say the point p is a point in 3d space, represented
by the vector:

e \We want to draw this on screen (Rasterization)
o 3d scene description — 2d image



Rasterizing points

e Two issues though!

o Our screen is a 2d coordinate system, and the point
Is in 3d!
o Where in the screen is (2.5, 1.5, -1)7?
e \Ve have a mismatch in coordinate systems.

pP=D-P-C' - M-p



Coordinate Systems

e Object space: What we call our original 3d coordinate system
?77?
?77?
2?77

e Image space: The 2d coordinate system of the display window



Image Space

e X0 and x1 are 0 and window width respectively
e Y0 and y1 are 0 and window height respectively
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Coordinate Systems

e Object space: What we call our original 3d coordinate system

e World space: After transforming (translation, scaling, rotation)
?77?

?7?7?
e Image space: The 2d coordinate system of the display window

=D -M-p



World Space

e Rotation then translation (do it this way)
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World Space

e J[ranslation then rotation
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Model Matrix

e Usually denoted M, for Model

e \We've defined the member variable toWorld for both
cube and OBJODbject.

et :sping 3

e What's wrong with this method?
=D -M-p



Coordinate Systems

e Object space: What we call our original 3d coordinate system
e \World space: After transforming (translation, scaling, rotation)

e Camera space: How the world looks, centered around camera
?7?7?

e Image space: The 2d coordinate system of the display window

p=D-C'-M-p



Camera Space

» Construct from center of projection e, look at d, up-
vector up:

up
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Inverse Camera Matrix

e We're actually interested in finding the inverse ¢!
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Inverse Camera Matrix

e How did we do itin openGL’?

O Do we have to construct this manually?

e There’'s a glm function that does this for us!

C inverse = glm::lookAt (e, d,

=D -C'-M-p

up)



Coordinate Systems

Object space: What we call our original 3d coordinate system
World space: After transforming (translation, scaling, rotation)
Camera space: How the world looks, centered around camera
Projection space: How the world looks with perspective
Image space: The 2d coordinate system of the display window

pP=D-P-C' - M-p



Projection Space

e Perspective projection matrix(P) will create perspective
transform, and put our Camera Space into the canonical
view volume

1.0
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Perspective Projection

How did we do it in openGL?

o D - we e tocostrut thiaIIy?
e There’'s a glm function that does this for us!

P = glm: :perspective(glm::radians (60.0f),
(float) width / (float) height,
1.0£, 1000.0f);

pP=D-P-C' - M-p



Interactive Graphics

e \When/where do we change these for project 17

o Object: Doesn’t change! Inherent to object
o World: When the object transforms (e.g. cube’s spin, keyboard input)
o Camera: We're not moving the camera for this project
o Projection: What happens when user changes the aspect ratio?
o Image: What happens when the viewport becomes larger or smaller?
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e \What happens when we resize the window?
o aspect, x/, x0, y1, y0 change
o Have to update P and D.

e \What about pixel buffer?

1.0
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e Resizing should change the total number of pixels
o We provide code for this

resizeCallback(GLFWwindow®

window _width =

window_height =
elete[] pixels;

pixels = new float[window_wi indow_height * 3];




Some Code Tips

e OpenGL expects column major, not row major.
e How do we end up drawing to the buffer?
I ixels(window widt wind . . .




Some Code Tips

e Manually changing the pixels array is tedious
0 drawPoint (int x, int vy, float r, float g, float b)
m At the index [X][y] of our pixel buffer, let’s set our colortober, g, b
m 1int offset = y*width*3 + x*3;
pixels[offset] = r;
pixels[offset+l] = g;
pixels[offset+2] = b;



Some Code Tips

Foo bar = Foo();

Foo constructor called

Foo object created

Data copied over from temporary
Foo() object into bar

~Foo() destructor called on
temporary Foo object

Foo *bar = new Foo();

e Foo constructor called

e Foo object created

e Address of Foo() object that was
created is saved in bar



Some Code Tips

e DO NOT load your OBJ files from disk every frame
e How can we efficiently implement switching between

OBJ models without having a series of if statements?

o What if we had a Drawable* and we change what it points to whenever
we need to switch between models?

e Multiple OBJ objects?



