
CSE 167
Discussion #2
Nosrasteratu

Rasterizing points
● Let’s say the point p is a point in 3d space, represented

by the vector:

● We want to draw this on screen (Rasterization)
○ 3d scene description → 2d image

Rasterizing points
● Two issues though!

○ Our screen is a 2d coordinate system, and the point
is in 3d!

○ Where in the screen is (2.5, 1.5, -1)?
● We have a mismatch in coordinate systems.

Coordinate Systems
● Object space: What we call our original 3d coordinate system

???
???
???

● Image space: The 2d coordinate system of the display window

Image Space
● x0 and x1 are 0 and window width respectively
● y0 and y1 are 0 and window height respectively

Coordinate Systems
● Object space: What we call our original 3d coordinate system
● World space: After transforming (translation, scaling, rotation)

???
???

● Image space: The 2d coordinate system of the display window

World Space
● Rotation then translation (do it this way)

World Space
● Translation then rotation

Model Matrix
● Usually denoted M, for Model
● We’ve defined the member variable toWorld for both

cube and OBJObject.

● What’s wrong with this method?

Coordinate Systems
● Object space: What we call our original 3d coordinate system
● World space: After transforming (translation, scaling, rotation)
● Camera space: How the world looks, centered around camera

???
● Image space: The 2d coordinate system of the display window

Camera Space

Inverse Camera Matrix
● We’re actually interested in finding the inverse

Inverse Camera Matrix
● How did we do it in openGL?

● Do we have to construct this manually?
● There’s a glm function that does this for us!

C_inverse = glm::lookAt(e, d, up)

Coordinate Systems
● Object space: What we call our original 3d coordinate system
● World space: After transforming (translation, scaling, rotation)
● Camera space: How the world looks, centered around camera
● Projection space: How the world looks with perspective
● Image space: The 2d coordinate system of the display window

Projection Space
● Perspective projection matrix(P) will create perspective

transform, and put our Camera Space into the canonical
view volume

Perspective Projection
● How did we do it in openGL?

● Do we have to construct this manually?
● There’s a glm function that does this for us!

P = glm::perspective(glm::radians(60.0f),
(float) width / (float) height,
1.0f, 1000.0f);

Interactive Graphics
● When/where do we change these for project 1?

○ Object: Doesn’t change! Inherent to object
○ World: When the object transforms (e.g. cube’s spin, keyboard input)
○ Camera: We’re not moving the camera for this project
○ Projection: What happens when user changes the aspect ratio?
○ Image: What happens when the viewport becomes larger or smaller?

Resizing
● What happens when we resize the window?

○ aspect, x1, x0, y1, y0 change
○ Have to update P and D.

● What about pixel buffer?

Resizing
● Resizing should change the total number of pixels

○ We provide code for this

Some Code Tips
● OpenGL expects column major, not row major.
● How do we end up drawing to the buffer?

Some Code Tips
● Manually changing the pixels array is tedious

○ drawPoint(int x, int y, float r, float g, float b)
■ At the index [x][y] of our pixel buffer, let’s set our color to be r, g, b
■ int offset = y*width*3 + x*3;

pixels[offset] = r;
pixels[offset+1] = g;
pixels[offset+2] = b;

Some Code Tips

● Foo constructor called
● Foo object created
● Data copied over from temporary

Foo() object into bar
● ~Foo() destructor called on

temporary Foo object

● Foo constructor called
● Foo object created
● Address of Foo() object that was

created is saved in bar

Foo bar = Foo(); Foo *bar = new Foo();

Some Code Tips
● DO NOT load your OBJ files from disk every frame
● How can we efficiently implement switching between

OBJ models without having a series of if statements?
○ What if we had a Drawable* and we change what it points to whenever

we need to switch between models?
● Multiple OBJ objects?

