
CSE 167
Discussion 10 by Russell Xie

12/05/2018

Agenda
● Final Project Review
● Water Effect with Reflection and Refraction
● Procedurally Generated X

○ Terrain
○ Animated Clouds
○ Plants

● Advanced Collision Detection
● Extra Credit Features
● Presentation and Demo
● Q&A

Final Project Recap
● Link to the Project Page: http://ivl.calit2.net/wiki/index.php/Project5F18
● Project Due Date: Dec 13th, Thursday at 3:00pm

○ Late submission are NOT permitted.
○ Submit to TritonEd and upload the Youtube Video
○ Next Blog due date: Tuesday on Finals week (Dec 11th at night)

● Worth 20% of your grade!
● N medium/hard features required for a team of N people
● Extra Credit features can double count for technical scores!

○ Team of N people must implement N features for full points

● “We will evaluate based on technical and creative merits.”

http://ivl.calit2.net/wiki/index.php/Project5F18

Water Effect
● Double count for “Bezier Patches” and “Water Reflection & Refraction”?

○ Depends on your implementation
○ Demonstrate your Bezier Patches implementation (2 points)
○ Demonstrate your reflection & refraction feature (2 points)

Water Surface without reflectionWater Surface without Bezier
(but I love low-poly style!)

Water Effect with Reflection and Refraction
- FrameBuffer
● FrameBuffer Object is your friend
● Concept of FrameBuffer - Chalkboard Time
● Create FBO for Reflection and Refraction

○ glBindFramebuffer(GL_FRAMEBUFFER, FBO_Reflection);
○ Calc Reflection cam_pos and lookat
○ Render the Scene (without water)
○ Do the same with FBO_Refraction
○ glBindFramebuffer(GL_FRAMEBUFFER, 0);
○ Render Main scene (water with texture)

glFramebufferTexture2D - add texture image to FBO

Water Effect with Reflection and Refraction
- Something else to consider
● Generate a simple water surface ?

○ Calc 2D coordinates (x,z), b/c y=0

● Use Depth Buffer?
○ If you need depth effects
○

● glEnable(GL_CLIP_DISTANCE0);
○ Only render geometry above/below the water for reflection/refraction

● Implement the Fresnel Effect:
○ Change how reflective the water is depending on the angle you look at it.

https://youtu.be/LgnLB07HDSw?t=6

Water Effect with Reflection and Refraction
- Something else to consider
● How do I get the normal of the water surface?

○ One way is to retrieve two neighbor vertices and cross-product

● Add Diffuse and Specular effects for realistic lighting
○ Yes, like in hw2
○

● Make the water dynamic/rippling
○ You need a noise function or DuDv map, and adjust vertices in the shader

Water Effect with Reflection and Refraction
● Reference:

○ OpenGL Water Tutorial by ThinMatrix:
https://www.youtube.com/watch?v=HusvGeEDU_U&list=PLRIWtICgwaX23jiqVByUs0bqhna
lNTNZh

○ Reflection and Refraction Shading from Scratchapixel:
○ https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflec

tion-refraction-fresnel

https://www.youtube.com/watch?v=HusvGeEDU_U&list=PLRIWtICgwaX23jiqVByUs0bqhnalNTNZh
https://www.youtube.com/watch?v=HusvGeEDU_U&list=PLRIWtICgwaX23jiqVByUs0bqhnalNTNZh
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel

Procedurally Generated X
● The General Idea:
● Construct 3D models or textures algorithmically

○ vs. data-driven modeling

● Usually defined by a small set of data, or rules, that describes the
properties of the model

● Often include randomness to add variety
○ E.g.: one algorithm to generate different type of trees using randomness

Procedurally Generated Terrain
● Landscapes are constructed as height fields
● Store height value at each point
● Midpoint Displacement Algorithm and Diamond Square Algorithm

Procedurally Generated Terrain
- Other methods
● Use Perlin Noise

○ To generate a height maps for the terrain
○ perlin_noise(xn,yn) -> deterministic height number
○ Sample Implementation in C++

● Use a combination of wave functions
○

.

https://en.wikipedia.org/wiki/Perlin_noise
https://solarianprogrammer.com/2012/07/18/perlin-noise-cpp-11/

Procedurally Generated Terrain
- Something else to consider
● Generate Volumetric Terrain

○ Need two different rules
○ Generate the upside and the downside of the terrain
○ Try different sets of configurations to make it look good

● Texture the terrain
○ Define different textures/colors
○ Based on the elevation
○ .0~.1 to be water
○ .3~.4 to be green forests
○ 0.9~1 to be snow
○ etc.

Procedurally Generated Clouds
● To have animated (or perhaps volumetric) clouds, arbitrary shape
● Can be simple but can also be highly complex to achieve realistic effect
● Some reference:

○ A. Webanck et al. / Procedural Cloudscapes
○ Schpok et al / A Real-Time Cloud Modeling, Rendering, and Animation System
○ Petr Man: Generating and Real-Time Rendering of Clouds

● Can achieve similar effects using particle system

https://hal.archives-ouvertes.fr/hal-01730789/file/Procedural-Cloudscapes-EG2018.pdf
https://www.sci.utah.edu/publications/schpok03/scaclouds.pdf
https://pdfs.semanticscholar.org/d915/3e55be61f2f5f34447b35fb5fff696088511.pdf

Procedural Plants with L-System
● Grammar = {Variables, constants, initial State, production rules}
● Reference:
● Chalk-board time

http://web.cse.ohio-state.edu/~wang.3602/courses/cse3541-2016-spring/17-tree.pdf

Procedural Plants with L-System
● Requirements: at least 4 variables with parameters
● How to add parameters?

○ Treat each variable as a function
○ Now F[-B]F[+B][B] becomes e.g. F(0.5)[-(60)B]F(1.0)[+(90)B][B]
○ What does this mean?
○ You should use some kind of regulated randomization for parameters

● How to extend to 3D?
○ Add rotational variables: how much to rotate in xz-plane and how much to rotate w.r.t y-axis
○ E.g: F(0.5)[&(90)^(30)B]

Collision Detection with Arbitrary Geometry
● More have been covered in previous discussion slides
● Basic Idea: Recursive Intersection Tests

○ Break object into multiple sections
○ Use small bounding spheres/boxes inside the object
○ Continue to test all triangles inside the bounding sphere/boxes if intersection detected

● Make use of the scene graph engine
● Can be computationally expensive when geometry is very complex

○ Too many triangles to test
○ Not very practical in game engines

http://ivl.calit2.net/wiki/images/c/c2/Discussion08F18.pdf

Extra Credit Features
● Water Effect: Covered
● SSAO: https://learnopengl.com/Advanced-Lighting/SSAO
● Motion Blur:

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html
● DOF Effect: Often use Bokeh Blur; Be able to change aperture/focus

○ Example that I found useful:
http://artmartinsh.blogspot.com/2010/02/glsl-lens-blur-filter-with-bokeh.html

● Make use of FBO’s depth Buffer:

https://learnopengl.com/Advanced-Lighting/SSAO
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html
http://artmartinsh.blogspot.com/2010/02/glsl-lens-blur-filter-with-bokeh.html

Presentation and Demo - Logistics
● Agenda for Thursday on Finals Week (Dec 13th)

○ 3pm - 4pm: Screening of videos made by each team (CENTER 113)
○ 4pm - 5pm: Group A science-fair style demos in the CSE Lab (B260/B270 or B210/B220)
○ 5pm - 6pm: Group B science-fair style demos in the CSE Lab (B260/B270 or B210/B220)

● Everyone needs to show up at 3pm for the video screening
● Graders will all be trying out your application during demos.

○ Be sure to practice demoing
○ Grades will not be decided on the spot

● Try out projects from other groups as well!

Presentation and Demo - How to give a good demo
● A good/bad demo experience can sometime

affect user’s impression when trying out your
application!

● Note that the “subjective” part your grade
may depend on your demo

● Tells us clearly what technical features you implemented. Is it complete?
● Do you have other efforts you want to share about your project?
● Do your features have a toggle switch?
● Do your EC features have visual debugging aids?
● Can a grader/student try out your demo?

Questions?

Thanks for choosing CSE 167! 🎉
Good Luck on the Final Project!

