CSE 167

=== Discussion 10 by Russell Xie
12/05/2018

Agenda

e Final Project Review
e Water Effect with Reflection and Refraction

e Procedurally Generated X
o Terrain
o Animated Clouds
o Plants

Advanced Collision Detection
Extra Credit Features
Presentation and Demo
Q&A

Final Project Recap

e Link to the Project Page: http://ivl.calit2.net/wiki/index.php/Project5F18
e Project Due Date: Dec 13th, Thursday at 3:00pm

o Late submission are NOT permitted.
o Submit to TritonEd and upload the Youtube Video
o Next Blog due date: Tuesday on Finals week (Dec 11th at night)

e Worth 20% of your grade!
e N medium/hard features required for a team of N people

e Extra Credit features can double count for technical scores!
o Team of N people must implement N features for full points

e "“We will evaluate based on technical and creative merits.”

http://ivl.calit2.net/wiki/index.php/Project5F18

Water Effect

e Double count for “Bezier Patches” and “Water Reflection & Refraction”?
o Depends on your implementation
o Demonstrate your Bezier Patches implementation (2 points)
o Demonstrate your reflection & refraction feature (2 points)

Water Surface without Bezier Water Surface without reflection
(but | love low-poly style!)

Water Effect with Reflection and Refraction
- FrameBuffer

e FrameBuffer Object is your friend
e Concept of FrameBuffer - Chalkboard Time
e Create FBO for Reflection and Refraction

@)

o O O O O

glFramebufferTexture2D - add texture image to FBO

glBindFramebuffer(GL_FRAMEBUFFER, FBO_Reflection);
Calc Reflection cam_pos and lookat
Render the Scene (without water)

Do the same with FBO_Refraction
glBindFramebuffer(GL_FRAMEBUFFER, 0);
Render Main scene (water with texture)

transmission
(refraction)

Water Effect with Reflection and Refraction
- Something else to consider

e Generate a simple water surface ?

i float calculateFresnel () {

O Calc ZD Coordlnates (XIZ)I b/C y=0 vec3 viewVector = normalize (Iaass_t:oCameraVector) s
vec3 normal = normalize (pass_normal);
[USG Depth BUffer? [float refractiveFactor = dot (viewVector, normal):;
[refractiveFactor = pow(refractiveFactor, fresnelReflective):;
o If yOU need depth effeCtS return clamp (refractiveFactor, 0.0, 1.0):

@) depthl = texture(tDepth, vUv);
e glEnable(GL_CLIP_DISTANCEOQ);
o Only render geometry above/below the water for reflection/refraction

e Implementthe Fresnel Effect:
o Change how reflective the water is depending on the angle you look at it.

vec3 finalColour = mix(reflectColour, refractColour, calculateFresnel()):

https://youtu.be/LgnLB07HDSw?t=6

Water Effect with Reflection and Refraction
- Something else to consider

e How do | get the normal of the water surface?
o One way is to retrieve two neighbor vertices and cross-product
e Add Diffuse and Specular effects for realistic lighting

o Yes, likein hw2

o color = A (color) * diffuse + specular, f);

color = mix(reflectColor, refractColor, calcFresnel());

e Make the water dynamic/rippling
o You need a noise function or DuDv map, and adjust vertices in the shader

vec2 distortionl = texture (dudvMap, vec2 (textureCoords.x, textureCoords.y)).rg * 2.0 - 1.0;

Water Effect with Reflection and Refraction

e Reference:
o OpenGL Water Tutorial by ThinMatrix:

https://www.youtube.com/watch?v=HusvGeEDU U&list=PLRIWtICgwaX23jigVByUsObghna
INTNZh

o Reflection and Refraction Shading from Scratchapixel:

o https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflec
tion-refraction-fresnel

https://www.youtube.com/watch?v=HusvGeEDU_U&list=PLRIWtICgwaX23jiqVByUs0bqhnalNTNZh
https://www.youtube.com/watch?v=HusvGeEDU_U&list=PLRIWtICgwaX23jiqVByUs0bqhnalNTNZh
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel

Procedurally Generated X

e The General Idea:

e Construct 3D models or textures algorithmically
o vs. data-driven modeling

e Usually defined by a small set of data, or rules, that describes the
properties of the model

e Often include randomness to add variety
o E.g.:one algorithm to generate different type of trees using randomness

Procedurally Generated Terrain

e Landscapes are constructed as height fields
e Store height value at each point
e Midpoint Displacement Algorithm and Diamond Square Algorithm

The diamond step: For each square in the array, set the midpoint of
that square to be the average of the four corner points plus a
random value.

The square step: For each diamond in the array, set the midpoint of
that diamond to be the average of the four corner points plus a
random value.

At each iteration, the magnitude of the random value should be
reduced.

Procedurally Generated Terrain
- Other methods

e Use Perlin Noise
o To generate a height maps for the terrain
o perlin_noise(xn,yn) -> deterministic height number
o Sample Implementation in C++

e Use a combination of wave functions

float generateOffset (float x, float z){
float radiansX = (x / wavelength + waveTime) * 2.0 * PI;
float radiansZ = (z / wavelength + waveTime) * 2.0 * PI;
return waveAmplitude * 0.5 * (sin(radiansZ) + cos(radiansX)):

https://en.wikipedia.org/wiki/Perlin_noise
https://solarianprogrammer.com/2012/07/18/perlin-noise-cpp-11/

Procedurally Generated Terrain
- Something else to consider

e Generate Volumetric Terrain
o Need two different rules
o Generate the upside and the downside of the terrain
o Trydifferent sets of configurations to make it look good

e Texture the terrain

Define different textures/colors
Based on the elevation

.0~.1 to be water

.3~.4 to be green forests

0.9~1 to be snow

etc.

O

O O O O O

Procedurally Generated Clouds

e To have animated (or perhaps volumetric) clouds, arbitrary shape
e (Can be simple but can also be highly complex to achieve realistic effect

e Some reference:
o A.Webanck et al. / Procedural Cloudscapes
o Schpok et al / A Real-Time Cloud Modeling, Rendering, and Animation System
o Petr Man: Generating and Real-Time Rendering of Clouds

e Can achieve similar effects using particle system

https://hal.archives-ouvertes.fr/hal-01730789/file/Procedural-Cloudscapes-EG2018.pdf
https://www.sci.utah.edu/publications/schpok03/scaclouds.pdf
https://pdfs.semanticscholar.org/d915/3e55be61f2f5f34447b35fb5fff696088511.pdf

Procedural Plants with L-System

e Grammar = {Variables, constants, initial State, production rules}

e Reference:
F: move forward

root: B

e (Chalk-board time + trn Jok
p: B—=F -: turn right
[: Store the current position
]: restore the previous position

B — F[-BJF[+B][B]

http://web.cse.ohio-state.edu/~wang.3602/courses/cse3541-2016-spring/17-tree.pdf

Procedural Plants with L-System

e Requirements: at least 4 variables with parameters

e How to add parameters?

Treat each variable as a function

Now F[-B]F[+B][B] becomes e.g. F(0.5)[-(60)B]F(1.0)[+(90)B][B]
What does this mean?

You should use some kind of regulated randomization for parameters
e How to extend to 3D?

o Add rotational variables: how much to rotate in xz-plane and how much to rotate w.r.t y-axis
o E.g: F(0.5)[&(90)A(30)B]

O O O O

Collision Detection with Arbitrary Geometry

e More have been covered in_previous discussion slides

e Basic ldea: Recursive Intersection Tests

o Break object into multiple sections
o Use small bounding spheres/boxes inside the object
o Continue to test all triangles inside the bounding sphere/boxes if intersection detected

e Make use of the scene graph engine
e (Can be computationally expensive when geometry is very complex

o Tooma ny tria ngles to test e Once you have determined there is an intersection in the small bounding
. . . boxes/spheres, perform intersection tests with the triangles inside them
o N Ot ve ry p ra Ctl Ca | In ga me e ngl nes o This requires you to iterate through the triangles in both objects and testing for

intersection on each pair of triangles
e Only 2 possible cases can happen
o 2 edges of a triangle intersects the other
o 1 edge of each triangle intersects the other

X

http://ivl.calit2.net/wiki/images/c/c2/Discussion08F18.pdf

Extra Credit Features

e Water Effect; Covered
e SSAQ:
e Motion Blur:

e DOF Effect: Often use Bokeh Blur; Be able to change aperture/focus
o Example that | found useful:

e Make use of FBO's depth Buffer:

https://learnopengl.com/Advanced-Lighting/SSAO
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch27.html
http://artmartinsh.blogspot.com/2010/02/glsl-lens-blur-filter-with-bokeh.html

Presentation and Demo - Logistics

e Agenda for Thursday on Finals Week (Dec 13th)

o 3pm - 4pm: Screening of videos made by each team (CENTER 113)
o 4pm -5pm: Group A science-fair style demos in the CSE Lab (B260/B270 or B210/B220)
o 5pm - 6pm: Group B science-fair style demos in the CSE Lab (B260/B270 or B210/B220)

e Everyone needs to show up at 3pm for the video screening

e Graders will all be trying out your application during demos.

o Be sure to practice demoing
o Grades will not be decided on the spot

e Try out projects from other groups as well!

Presentation and Demo - How to give a good demo

e A good/bad demo experience can sometime
affect user’'s impression when trying out your
application!

e Note that the “subjective” part your grade
may depend on your demo

Tells us clearly what technical features you implemented. Is it complete?
Do you have other efforts you want to share about your project?

Do your features have a toggle switch?

Do your EC features have visual debugging aids?

Can a grader/student try out your demo?

Questions?

Thanks for choosing CSE 167! #
Good Luck on the Final Project!

