CSE 167: Introduction to Computer Graphics Lecture #9: Culling

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2014

Announcements

- Project 3 due Friday, Nov. 7th at 3:30pm
 - Don't forget to upload source code to Ted by the deadline!

Modifying the Scene

- Change tree structure
 - Add, delete, rearrange nodes
- Change node parameters
 - Transformation matrices
 - Shape of geometry data
 - Materials
- Create new node subclasses
 - Animation, triggered by timer events
 - Dynamic "helicopter-mounted" camera
 - Light source
- Create application dependent nodes
 - Video node
 - Web browser node
 - Video conferencing node
 - Terrain rendering node

Benefits of a Scene Graph

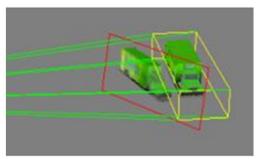
- Can speed up rendering by efficiently using low-level API
 - Avoid state changes in rendering pipeline
 - Render objects with similar properties in batches (geometry, shaders, materials)
- Change parameter once to affect all instances of an object
- Abstraction from low level graphics API
 - Easier to write code
 - Code is more compact
- Can display complex objects with simple APIs
 - Example: osgEarth class provides scene graph node which renders a Google Earth-style planet surface

Lecture Overview

- Scene Graphs & Hierarchies
 - Introduction
 - Data structures
- Performance Optimization
 - Level-of-detail techniques
 - View Frustum Culling

Level-of-Detail Techniques

- Don't draw objects smaller than a threshold
 - Small feature culling
 - Popping artifacts
- Replace 3D objects by 2D impostors
 - Textured planes representing the objects



Impostor generation

Adapt triangle count to projected size

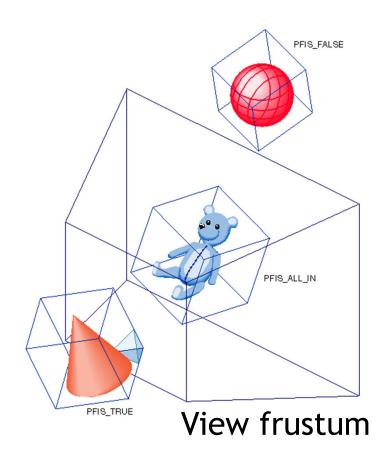
Size dependent mesh reduction (Data: Stanford Armadillo)



Original vs. impostor

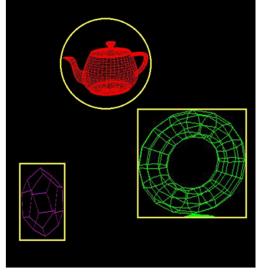
View Frustum Culling

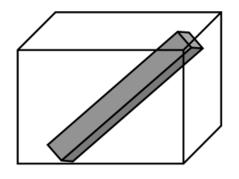
- Frustum defined by 6 planes
- Each plane divides space into "outside", "inside"
- Check each object against each plane
 - Outside, inside, intersecting
- If "outside" all planes
 - Outside the frustum
- If "inside" all planes
 - Inside the frustum
- ▶ Else partly inside and partly out
- Efficiency

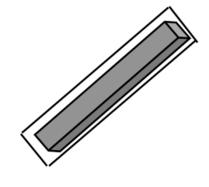


Bounding Volumes

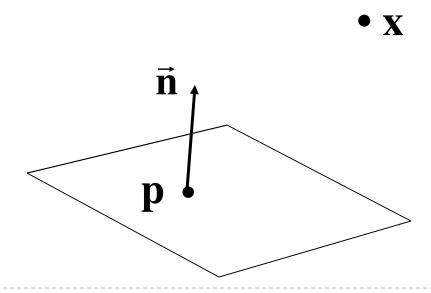
- Simple shape that completely encloses an object
- Generally a box or sphere
- We use spheres
 - Easiest to work with
 - But hard to calculate tight fits
- Intersect bounding volume with view frustum instead of each primitive



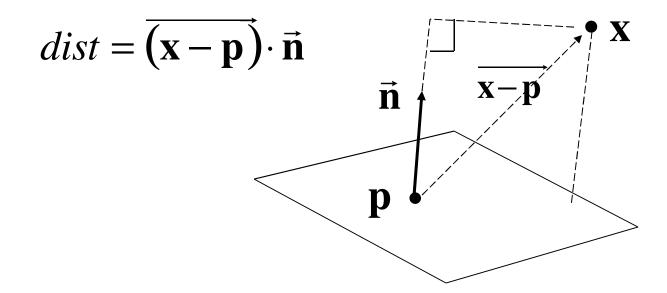




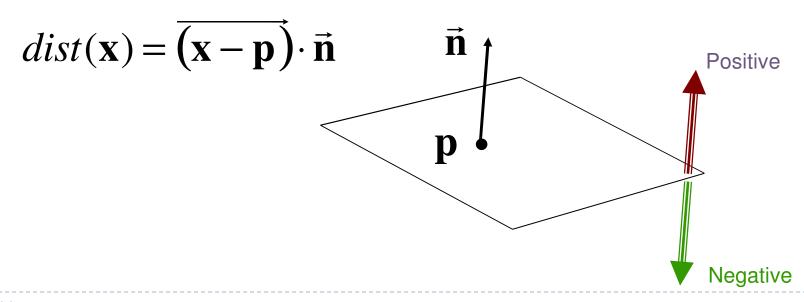
- A plane is described by a point **p** on the plane and a unit normal **n**
- Find the (perpendicular) distance from point **x** to the plane



▶ The distance is the length of the projection of x-p onto n



- ▶ The distance has a sign
 - positive on the side of the plane the normal points to
 - negative on the opposite side
 - zero exactly on the plane
- Divides 3D space into two infinite half-spaces



Simplification

$$dist(\mathbf{x}) = (\mathbf{x} - \mathbf{p}) \cdot \mathbf{n}$$
$$= \mathbf{x} \cdot \mathbf{n} - \mathbf{p} \cdot \mathbf{n}$$
$$dist(\mathbf{x}) = \mathbf{x} \cdot \mathbf{n} - d, \quad d = \mathbf{pn}$$

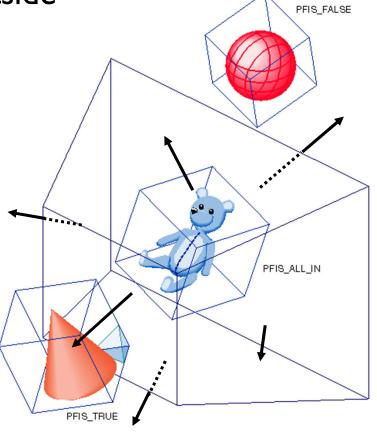
- ▶ d is independent of x
- ▶ *d* is distance from the origin to the plane
- ▶ We can represent a plane with just d and n

Frustum With Signed Planes

Normal of each plane points outside

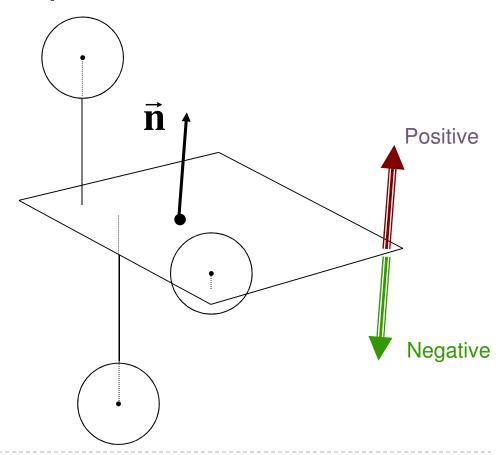
"outside" means positive distance

"inside" means negative distance



Test Sphere and Plane

- For sphere with radius r and origin x, test the distance to the origin, and see if it is beyond the radius
- ▶ Three cases:
 - $\rightarrow dist(\mathbf{x}) > r$
 - completely above
 - $\rightarrow dist(\mathbf{x}) < -r$
 - completely below
 - $\rightarrow -r < dist(\mathbf{x}) < r$
 - intersects

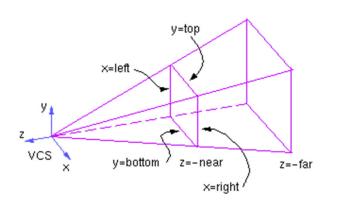


Culling Summary

- Precompute the normal n and value d for each of the six planes.
- Given a sphere with center **x** and radius *r*
- For each plane:
 - if $dist(\mathbf{x}) > r$: sphere is outside! (no need to continue loop)
 - ▶ add I to count if $dist(\mathbf{x}) < -r$
- If we made it through the loop, check the count:
 - if the count is 6, the sphere is completely inside
 - otherwise the sphere intersects the frustum
 - (can use a flag instead of a count)

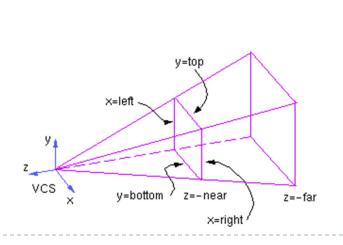
Culling Groups of Objects

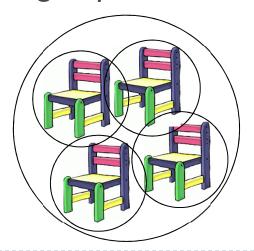
- Want to be able to cull the whole group quickly
- But if the group is partly in and partly out, want to be able to cull individual objects



Hierarchical Bounding Volumes

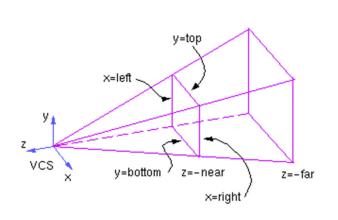
- Given hierarchy of objects
- Bounding volume of each node encloses the bounding volumes of all its children
- Start by testing the outermost bounding volume
 - If it is entirely outside, don't draw the group at all
 - If it is entirely inside, draw the whole group

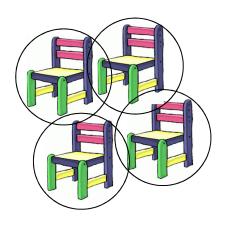




Hierarchical Culling

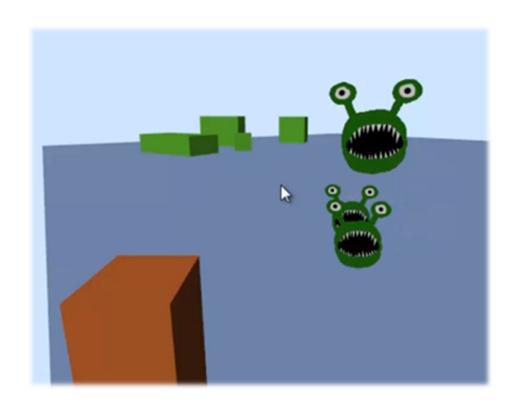
- If the bounding volume is partly inside and partly outside
 - Test each child's bounding volume individually
 - If the child is in, draw it; if it's out cull it; if it's partly in and partly out, recurse.
 - If recursion reaches a leaf node, draw it normally





Video

- Math for Game Developers Frustum Culling
 - http://www.youtube.com/watch?v=4p-E_31XOPM



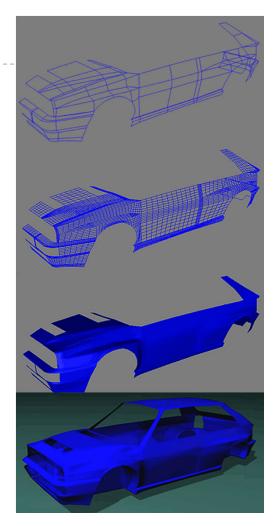
Lecture Overview

- Polynomial Curves
 - Introduction
 - Polynomial functions
- Bézier Curves
 - Introduction
 - Drawing Bézier curves
 - Piecewise Bézier curves

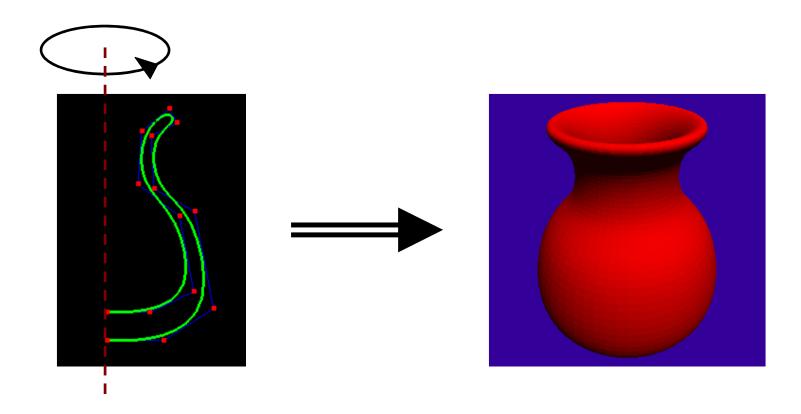
Modeling

- Creating 3D objects
- How to construct complex surfaces?
- Goal
 - Specify objects with control points
 - Objects should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces

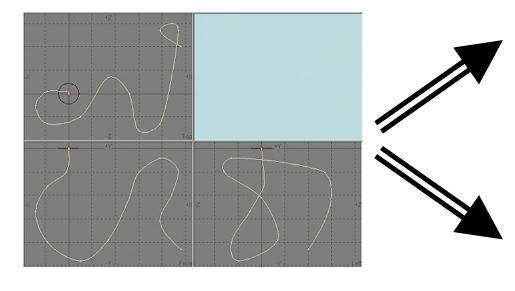
Next: What can curves be used for?

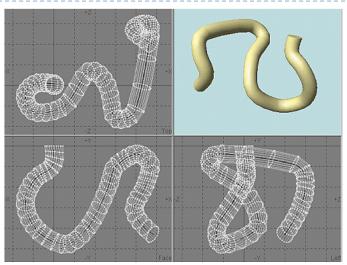


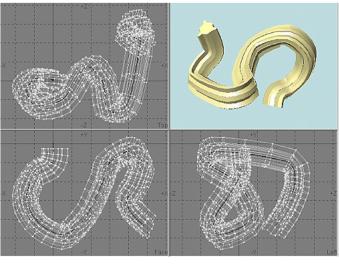
Surface of revolution



Extruded/swept surfaces



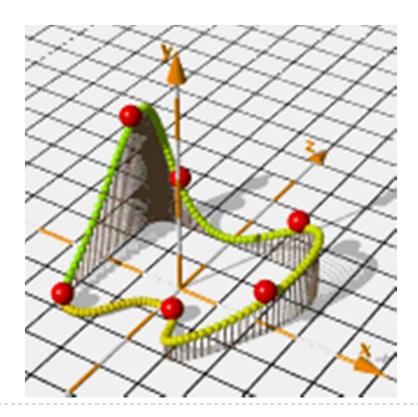




23

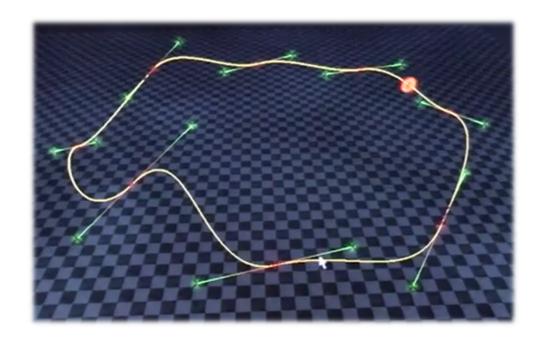
Animation

- Provide a "track" for objects
- Use as camera path



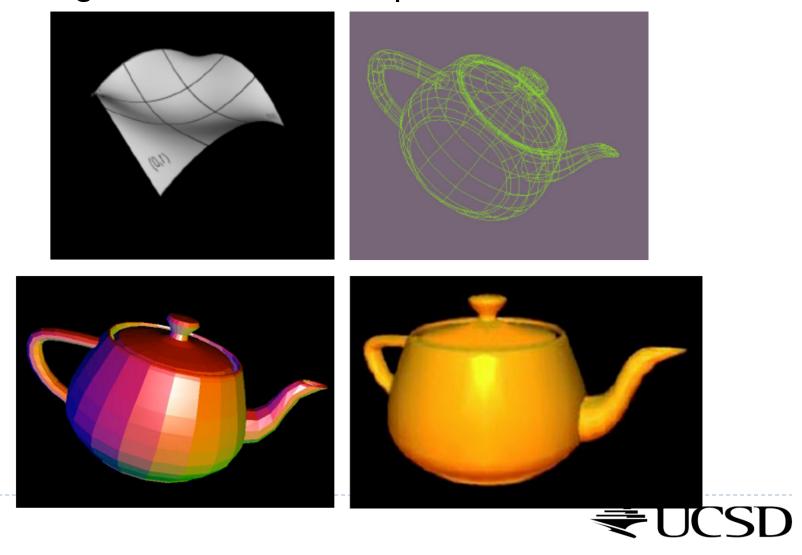
Video

- Bezier Curves
 - http://www.youtube.com/watch?v=hIDYJNEiYvU



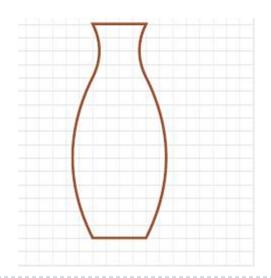
26

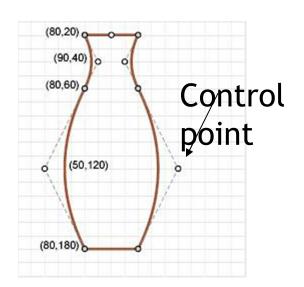
▶ Can be generalized to surface patches



Curve Representation

- Specify many points along a curve, connect with lines?
 - Difficult to get precise, smooth results across magnification levels
 - Large storage and CPU requirements
 - How many points are enough?
- Specify a curve using a small number of "control points"
 - Known as a spline curve or just spline

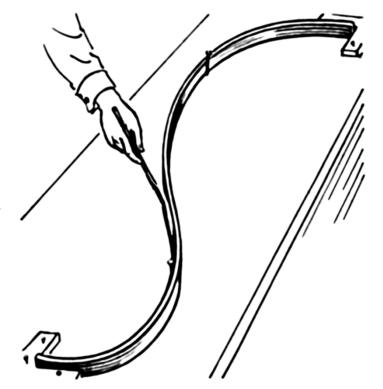




Spline: Definition

Wikipedia:

- Term comes from flexible spline devices used by shipbuilders and draftsmen to draw smooth shapes.
- Spline consists of a long strip fixed in position at a number of points that relaxes to form a smooth curve passing through those points.

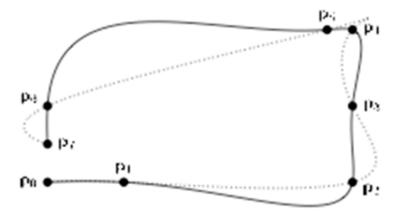


Lecture Overview

- Polynomial Curves
 - Introduction
 - Polynomial functions
- Bézier Curves
 - Introduction
 - Drawing Bézier curves
 - Piecewise Bézier curves

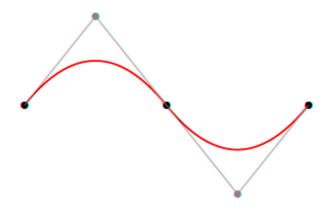
Interpolating Control Points

- "Interpolating" means that curve goes through all control points
- Seems most intuitive
- Surprisingly, not usually the best choice
 - Hard to predict behavior
 - Hard to get aesthetically pleasing curves



Approximating Control Points

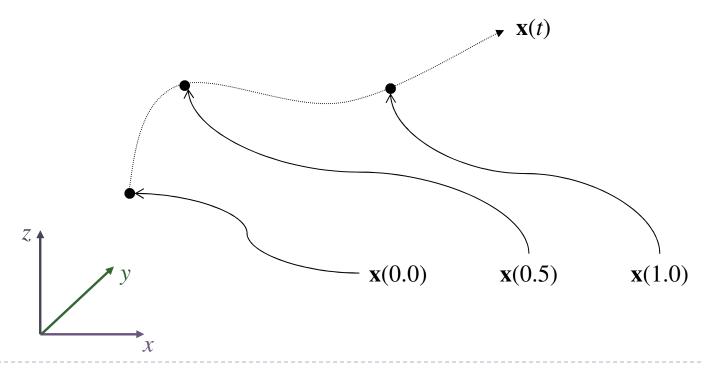
Curve is "influenced" by control points



- Various types
- Most common: polynomial functions
 - Bézier spline (our focus)
 - ▶ B-spline (generalization of Bézier spline)
 - NURBS (Non Uniform Rational Basis Spline): used in CAD tools

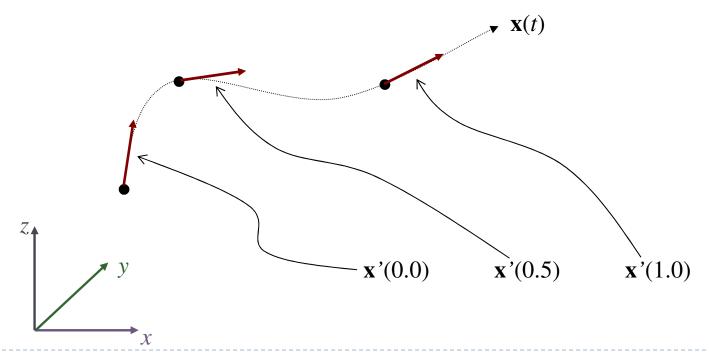
Mathematical Definition

- \blacktriangleright A vector valued function of one variable $\mathbf{x}(t)$
 - Given t, compute a 3D point $\mathbf{x} = (x, y, z)$
 - ▶ Could be interpreted as three functions: x(t), y(t), z(t)
 - Parameter t "moves a point along the curve"



Tangent Vector

- ▶ Derivative $\mathbf{x}'(t) = \frac{d\mathbf{x}}{dt} = (x'(t), y'(t), z'(t))$ ▶ Vector x' points in direction of movement
- Length corresponds to speed

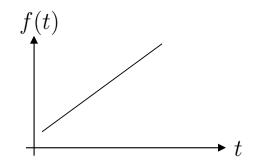


Lecture Overview

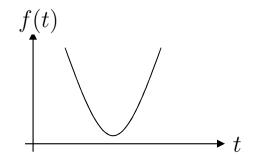
- Polynomial Curves
 - Introduction
 - Polynomial functions
- Bézier Curves
 - Introduction
 - Drawing Bézier curves
 - Piecewise Bézier curves

Polynomial Functions

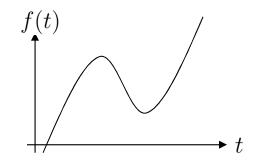
Linear: f(t) = at + b (1st order)



Quadratic: $f(t) = at^2 + bt + c$ (2nd order)

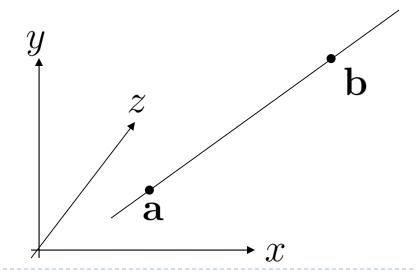


Cubic: $f(t) = at^3 + bt^2 + ct + d$ (3rd order)



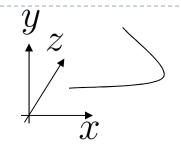
Polynomial Curves

L $inear <math> \mathbf{x}(t) = \mathbf{a}t + \mathbf{b}$ $\mathbf{x} = (x, y, z), \mathbf{a} = (a_x, a_y, a_z), \mathbf{b} = (b_x, b_y, b_z)$

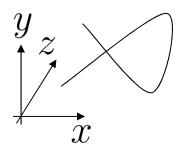


Polynomial Curves

Quadratic: $\mathbf{x}(t) = \mathbf{a}t^2 + \mathbf{b}t + \mathbf{c}$ (2nd order)



Cubic: $\mathbf{x}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$ (3rd order)



▶ We usually define the curve for $0 \le t \le 1$

Control Points

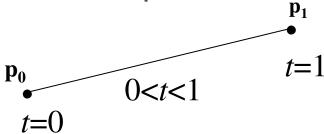
- Polynomial coefficients a, b, c, d can be interpreted as control points
 - Remember: \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} have x, y, z components each
- Unfortunately, they do not intuitively describe the shape of the curve
- Goal: intuitive control points

Control Points

- How many control points?
 - Two points define a line (1st order)
 - Three points define a quadratic curve (2nd order)
 - Four points define a cubic curve (3rd order)
 - k+1 points define a k-order curve
- Let's start with a line...

First Order Curve

- Based on linear interpolation (LERP)
 - Weighted average between two values
 - "Value" could be a number, vector, color, ...
- Interpolate between points $\mathbf{p_0}$ and $\mathbf{p_1}$ with parameter t
 - Defines a "curve" that is straight (first-order spline)
 - t=0 corresponds to $\mathbf{p_0}$
 - t=1 corresponds to \mathbf{p}_1
 - t=0.5 corresponds to midpoint



$$\mathbf{x}(t) = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) = (1-t)\mathbf{p}_0 + t \mathbf{p}_1$$

Linear Interpolation

- Three equivalent ways to write it
 - Expose different properties
- I. Regroup for points **p**

$$\mathbf{x}(t) = \mathbf{p}_0(1-t) + \mathbf{p}_1 t$$

2. Regroup for *t*

$$\mathbf{x}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$

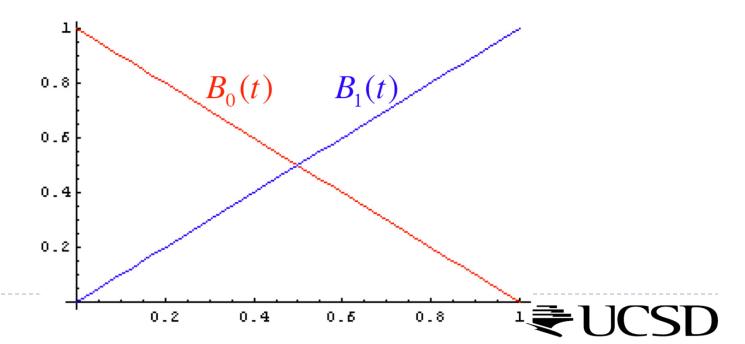
3. Matrix form

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}$$

Weighted Average

$$\mathbf{x}(t) = (1-t)\mathbf{p}_0 + (t)\mathbf{p}_1$$
$$= B_0(t) \mathbf{p}_0 + B_1(t)\mathbf{p}_1, \text{ where } B_0(t) = 1-t \text{ and } B_1(t) = t$$

- Weights are a function of t
 - Sum is always I, for any value of t
 - Also known as blending functions



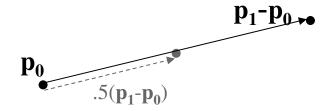
42

Linear Polynomial

$$\mathbf{x}(t) = \underbrace{(\mathbf{p}_1 - \mathbf{p}_0)}_{\text{vector}} t + \underbrace{\mathbf{p}_0}_{\text{point}}$$

$$\mathbf{a} \qquad \mathbf{b}$$

- lacktriangle Curve is based at point $f p_0$
- ▶ Add the vector, scaled by *t*



Matrix Form

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 \end{bmatrix} \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} \begin{vmatrix} t \\ 1 \end{vmatrix} = \mathbf{GBT}$$

- Geometry matrix $\mathbf{G} = \left| egin{array}{cc} \mathbf{p}_0 & \mathbf{p}_1 \end{array} \right|$
- $\mathbf{B} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$ Geometric basis
- $T = \left| \begin{array}{c} t \\ 1 \end{array} \right|$ Polynomial basis
- In components

$$\mathbf{x}(t) = \begin{bmatrix} p_{0x} & p_{1x} \\ p_{0y} & p_{1y} \\ p_{0z} & p_{1z} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix}$$

