
CSE 167:

Introduction to Computer Graphics

Lecture #12: Surface Patches

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2015

Announcements

� Project 5 due Friday

2

� Weights Bi(t) add up to 1 for any value of t

 x(t) = B0 t()p0 + B1 t()p1 + B2 t()p2 + B3 t()p3

The cubic Bernstein polynomials :

 B0 t()= −t
3 + 3t

2 − 3t + 1

 B1 t()= 3t
3 − 6t

2 + 3t

 B2 t()= −3t
3 + 3t

2

 B3 t()= t
3

 Bi (t) = 1∑

Cubic Bernstein Polynomials

3

General Bernstein Polynomials

B0

1
t()= −t + 1 B0

2
t()= t

2 − 2t + 1 B0

3
t()= −t

3 + 3t
2 − 3t + 1

B1

1
t()= t B1

2
t()= −2t

2 + 2t B1

3
t()= 3t

3 − 6t
2 + 3t

B2

2
t()= t

2
B2

3
t()= −3t

3 + 3t
2

B3

3
t()= t

3

Bi

n
t()=

n

i

1 − t()n− i

t()i n

i

=

n!

i! n − i()!

Bi

n
t()∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)

4

General Bézier Curves

� nth-order Bernstein polynomials form nth-order
Bézier curves

Bi

n
t()=

n

i

1− t()n− i

t()i

x t()= Bi

n
t()pi

i=0

n

∑

5

Bézier Curve Properties

Overview:

� Convex Hull property

� Affine Invariance

6

Definitions

� Convex hull of a set of points:

� Polyhedral volume created such that all lines connecting any
two points lie completely inside it (or on its boundary)

� Convex combination of a set of points:

� Weighted average of the points, where all weights between 0
and 1, sum up to 1

� Any convex combination of a set of points lies within the
convex hull

7

p0

p1

p2

p3

Convex Hull Property

� A Bézier curve is a convex combination of the control points
(by definition, see Bernstein polynomials)

� A Bézier curve is always inside the convex hull

� Makes curve predictable

� Allows culling, intersection testing, adaptive tessellation

� Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

8

Affine Invariance

Transforming Bézier curves

� Two ways to transform:

� Transform the control points, then compute resulting spline
points

� Compute spline points, then transform them

� Either way, we get the same points

� Curve is defined via affine combination of points

� Invariant under affine transformations (i.e., translation, scale,
rotation, shear)

� Convex hull property remains true

9

� Good for fast evaluation
� Precompute constant coefficients (a,b,c,d)

� Not much geometric intuition

Start with Bernstein form:

 x(t) = −t
3 + 3t

2 − 3t + 1()p0 + 3t
3 − 6t

2 + 3t()p1 + −3t
3 + 3t

2()p2 + t
3()p3

Regroup into coefficients of t :

x(t) = −p0 + 3p1 − 3p2 + p3()t 3 + 3p0 − 6p1 + 3p2()t 2 + −3p0 + 3p1()t + p0()1

x(t) = at
3 + bt

2 + ct + d

a = −p0 + 3p1 − 3p2 + p3()

b = 3p0 − 6p1 + 3p2()

c = −3p0 + 3p1()

d = p0()

Cubic Polynomial Form

10

� Other types of cubic splines use different basis matrices BBez

x(t) =
r
a

r
b

r
c d

t
3

t
2

t

1

r
a = −p0 + 3p1 − 3p2 + p3()
r
b = 3p0 − 6p1 + 3p2()
r
c = −3p0 + 3p1()

d = p0()

x(t) = p0 p1 p2 p3[]

GBez

1 2444 3444

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

BBez

1 2444 3444

t
3

t
2

t

1

T
{

Cubic Matrix Form

11

Cubic Matrix Form

xx (t) = p0 x p1x p2 x p3x[]

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

t
3

t
2

t

1

xy (t) = p0 y p1y p2 y p3y

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

t
3

t
2

t

1

xz (t) = p0z p1z p2z p3z

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

t
3

t
2

t

1

� In 3D: 3 equations for x, y and z:

12

� Bundle into a single matrix

� Efficient evaluation
� Pre-compute C

� Take advantage of existing 4x4 matrix hardware support

x(t) =

p0 x p1x p2 x p3x

p0 y p1y p2 y p3y

p0z p1z p2z p3z

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

t
3

t
2

t

1

x(t) = GBezBBezT

x(t) = C T

Matrix Form

13

Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves

14

Drawing Bézier Curves

� Draw line segments or individual pixels

� Approximate the curve as a series of line segments
(tessellation)

� Uniform sampling

� Adaptive sampling

� Recursive subdivision

15

Uniform Sampling

� Approximate curve with N straight segments

� N chosen in advance

� Evaluate

� Connect the points with lines

� Too few points?

� Poor approximation

� “Curve” is faceted

� Too many points?

� Slow to draw too many line segments

� Segments may draw on top of each other

xi = x ti() where ti =
i

N
 for i = 0, 1,K, N

xi =
r
a

i
3

N
3

+
r
b

i
2

N
2

+
r
c

i

N
+ d

x4

x0

x1

x2

x3

x(t)

16

Adaptive Sampling

� Use only as many line segments as you need

� Fewer segments where curve is mostly flat

� More segments where curve bends

� Segments never smaller than a pixel

x(t)

17

Recursive Subdivision

� Any cubic curve segment can be expressed as a
Bézier curve

� Any piece of a cubic curve is itself a cubic curve

� Therefore:

� Any Bézier curve can be broken down into smaller Bézier
curves

18

� De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2

19

Adaptive Subdivision Algorithm

� Use De Casteljau construction to split Bézier segment in
half

� For each half

� If “flat enough”: draw line segment

� Else: recurse

� Curve is flat enough if hull is flat enough

� Test how far the approximating control points are from a straight
segment

� If less than one pixel, the hull is flat enough

20

Drawing Bézier Curves With OpenGL

� Indirect OpenGL support for drawing curves:

� Define evaluator map (glMap)

� Draw line strip by evaluating map (glEvalCoord)

� Optimize by pre-computing coordinate grid (glMapGrid and
glEvalMesh)

� More details about OpenGL implementation:

� http://www.cs.duke.edu/courses/fall09/cps124/notes/12_curves
/opengl_nurbs.pdf

21

Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves

22

More Control Points

� Cubic Bézier curve limited to 4 control points
� Cubic curve can only have one inflection (point where curve changes

direction of bending)

� Need more control points for more complex curves

� k-1 order Bézier curve with k control points

� Hard to control and hard to work with
� Intermediate points don’t have obvious effect on shape

� Changing any control point changes the whole curve

� Want local support: each control point only influences nearby portion of
curve

23

Piecewise Curves
� Sequence of line segments

� Piecewise linear curve

� Sequence of simple (low-order) curves, end-to-end
� Known as a piecewise polynomial curve

� Sequence of cubic curve segments
� Piecewise cubic curve (here piecewise Bézier)

24

Parametric Continuity
� C0 continuity:

� Curve segments are connected

� C1 continuity:
� C0 & 1st-order derivatives agree
� Curves have same tangents
� Relevant for smooth shading

� C2 continuity:
� C1 & 2nd-order derivatives agree
� Curves have same tangents and curvature
� Relevant for high quality reflections

Overview

� Piecewise Bezier curves

� Bezier surfaces

26

Global Parameterization

� Given N curve segments x0(t), x1(t), …, xN-1(t)

� Each is parameterized for t from 0 to 1
� Define a piecewise curve

� Global parameter u from 0 to N

� Alternate: solution u also goes from 0 to 1

x(u) =

x0 (u), 0 ≤ u ≤ 1

x1(u − 1), 1 ≤ u ≤ 2

M M

xN −1(u − N − 1()), N − 1 ≤ u ≤ N

x(u) = xi (u − i), where i = u (and x(N) = xN −1(1))

x(u) = xi (Nu − i), where i = Nu

27

� Given N+1 points p0, p1, …, pN

� Define curve

� N+1 points define N linear segments
� x(i)=pi

� C0 continuous by construction
� C1 at pi when pi-pi-1 = pi+1-pi

Piecewise-Linear Curve

x(u) = Lerp(u − i,pi ,pi+1), i ≤ u ≤ i + 1

= (1− u + i)pi + (u − i)p i+1, i = u

p0

p1

p2

p3

p4

p5

p6

x(1.5)

x(5.25)

x(2.9)

28

Piecewise Bézier curve

• Given 3N + 1 points p0 ,p1,K,p3N

• Define N Bézier segments:

x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6

M

 xN −1(t) = B0 (t)p3N − 3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12

29

Piecewise Bézier Curve

 x(u) =

x0 (1

3
u), 0 ≤ u ≤ 3

x1(
1

3
u − 1), 3 ≤ u ≤ 6

M M

xN −1(
1

3
u − (N − 1)), 3N − 3 ≤ u ≤ 3N

 x(u) = xi

1

3
u − i(), where i = 1

3
u

� Parameter in 0<=u<=3N

x0(t)
x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12

30

� 3N+1 points define N Bézier segments
� x(3i)=p3i

� C0 continuous by construction
� C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

� C2 is harder to achieve

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous

31

Piecewise Bézier Curves

� Used often in 2D drawing programs

� Inconveniences
� Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3)

control points

� Some points interpolate, others approximate

� Need to impose constraints on control points to obtain C1

continuity

� C2 continuity more difficult

� Solutions
� User interface using “Bézier handles”

� Generalization to B-splines or NURBS

32

Bézier Handles

� Segment end points
(interpolating)
presented as curve
control points

� Midpoints
(approximating
points) presented as
“handles”

� Can have option to
enforce C1 continuity

Adobe Illustrator

33

� 3N+1 points define N Bézier segments
� x(3i)=p3i

� C0 continuous by construction
� C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

� C2 is harder to achieve

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous

34

Rational Curves

� Weight causes point to “pull” more (or less)

� Can model circles with proper points and weights,

� Below: rational quadratic Bézier curve (three control points)

pull less

35

B-Splines

� B as in Basis-Splines

� Basis is blending function

� Difference to Bézier blending function:

� B-spline blending function can be zero outside a particular
range (limits scope over which a control point has influence)

� B-Spline is defined by control points and range in which
each control point is active.

36

NURBS

� Non Uniform Rational B-Splines

� Generalization of Bézier curves

� Non uniform:

� Combine B-Splines (limited scope of control points) and
Rational Curves (weighted control points)

� Can exactly model conic sections (circles, ellipses)

� OpenGL support: see gluNurbsCurve

� Demo:
http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d
/index.html

� http://mathworld.wolfram.com/NURBSCurve.html

37

Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces

38

Curved Surfaces

Curves

� Described by a 1D series of control points

� A function x(t)

� Segments joined together to form a longer curve

Surfaces

� Described by a 2D mesh of control points

� Parameters have two dimensions (two dimensional parameter
domain)

� A function x(u,v)

� Patches joined together to form a bigger surface

39

� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

Parametric Surface Patch

0 1

1

u

v

x

y

z

x(0.8,0.7)

u

v

2D parameter domain

40

� x(u,v) describes a point in space for any given (u,v) pair

� u,v each range from 0 to 1

� Parametric curves

� For fixed u0 , have a v curve x(u0,v)

� For fixed v0 , have a u curve x(u,v0)

� For any point on the surface, there are a pair of parametric
curves through that point

Parametric Surface Patch

0 1

1

u

v

x

y

z

x(0.8,0.7)

u

v

x(0.4,v)

x(u,0.25)

2D parameter domain

41

Tangents

� The tangent to a parametric curve is also tangent to the
surface

� For any point on the surface, there are a pair of (parametric)
tangent vectors

� Note: these vectors are not necessarily perpendicular to each
other

u

v

∂x

∂u

∂x

∂v

42

Tangents

• Notation:

 • The tangent along a u curve, AKA the tangent in the u direction, is written as:

∂x

∂u
(u,v) or ∂

∂u
x(u,v) or xu (u,v)

 • The tangent along a v curve, AKA the tangent in the v direction, is written as:

∂x

∂v
(u,v) or ∂

∂v
x(u,v) or xv (u,v)

• Note that each of these is a vector-valued function:

 • At each point x(u,v) on the surface, we have tangent vectors ∂

∂u
x(u,v) and ∂

∂v
x(u,v)

43

Surface Normal

� Normal is cross
product of the two
tangent vectors

� Order matters!

r
n(u,v) =

∂x

∂u
(u,v) ×

∂x

∂v
(u,v)

Typically we are interested in the unit normal, so we need to normalize

r
n*(u,v) =

∂x

∂u
(u,v) ×

∂x

∂v
(u,v)

r
n(u,v) =

r
n*(u,v)
r
n*(u,v)

∂x

∂u

∂x

∂v
r
n

44

Bilinear Patch

� Control mesh with four points p0, p1, p2, p3

� Compute x(u,v) using a two-step construction scheme

p0 p1

p2

p3

u

v

45

Bilinear Patch (Step 1)

� For a given value of u, evaluate the linear curves on the two u-

direction edges

� Use the same value u for both:

q0=Lerp(u,p0,p1) q1=Lerp(u,p2,p3)

p0 p1

p2

p3

u

v

q0

q1

46

Bilinear Patch (Step 2)

� Consider that q0, q1 define a line segment

� Evaluate it using v to get x

p0 p1

p2

p3

u

v

q0

q1

x

x = Lerp(v,q0 ,q1)

47

Bilinear Patch

� Combining the steps, we get the full formula

p0 p1

p2

p3

u

v

q0

q1

x

x(u,v) = Lerp(v, Lerp(u,p0 ,p1), Lerp(u,p2 ,p3))

48

Bilinear Patch

� Try the other order

� Evaluate first in the v direction

r0 = Lerp(v,p0 ,p2) r1 = Lerp(v,p1,p3)

p0 p1

p2

p3

u

v

r0

r1

49

Bilinear Patch

� Consider that r0, r1 define a line segment

� Evaluate it using u to get x

x = Lerp(u,r0 ,r1)

p0 p1

p2

p3

u

v

r0

r1

x

50

Bilinear Patch

� The full formula for the v direction first:

x(u,v) = Lerp(u, Lerp(v,p0 ,p2), Lerp(v,p1,p3))

p0 p1

p2

p3

u

v

r0

r1

x

51

Bilinear Patch

� Patch geometry is independent of the order of u and v

x(u,v) = Lerp(v, Lerp(u,p0 ,p1), Lerp(u,p2 ,p3))

x(u,v) = Lerp(u, Lerp(v,p0 ,p2), Lerp(v,p1,p3))

p0 p1

p2

p3

u

v

q0

q1

r0

r1

x

52

Bilinear Patch

� Visualization

53

Bilinear Patches

� Weighted sum of control points

� Bilinear polynomial

� Matrix form

54

[]

 −

−=

v

v

pp

pp
uuvux

1
1),(

31

20

Properties
� Interpolates the control points

� The boundaries are straight line segments

� If all 4 points of the control mesh are co-planar, the patch is flat

� If the points are not co-planar, we get a curved surface

� saddle shape (hyperbolic paraboloid)

� The parametric curves are all straight line segments!

� a (doubly) ruled surface: has (two) straight lines through every point

� Not terribly useful as a modeling primitive

55

Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces

56

Bicubic Bézier patch

� Grid of 4x4 control points, p0 through p15

� Four rows of control points define Bézier curves along u
p0,p1,p2,p3; p4,p5,p6,p7; p8,p9,p10,p11; p12,p13,p14,p15

� Four columns define Bézier curves along v
p0,p4,p8,p12; p1,p6,p9,p13; p2,p6,p10,p14; p3,p7,p11,p15

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

57

Bézier Patch (Step 1)

� Evaluate four u-direction Bézier curves at scalar value u [0..1]

� Get points q0 … q3

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

q0

q1

q2

q3

q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7)

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15)

58

Bézier Patch (Step 2)

� Points q0 … q3 define a Bézier curve

� Evaluate it at v [0..1]

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

q0

q1

q2

q3

x

x(u,v) = Bez(v,q0 ,q1,q2 ,q3)

59

Bézier Patch

� Same result in either order (evaluate u before v or vice versa)

q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7)

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15)

x(u,v) = Bez(v,q0 ,q1,q2 ,q3)

 ⇔

r0 = Bez(v,p0 ,p4 ,p8 ,p12)

r1 = Bez(v,p1,p5 ,p9 ,p13)

r2 = Bez(v,p2 ,p6 ,p10 ,p14)

r3 = Bez(v,p3,p7 ,p11,p15)

x(u,v) = Bez(u,r0 ,r1,r2 ,r3)

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12 p13

p14 p15

u

v

r0 r1

r2 r3

x

q0

q1

q2

q3

60

61

U =

u
3

u
2

u

1

 V =

v
3

v
2

v

1

 BBez =

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

= BBez

T

Cx = BBez

T
GxBBez

Cy = BBez

T GyBBez

Cz = BBez

T GzBBez

 Gx =

p0 x p1x p2 x p3x

p4 x p5 x p6 x p7 x

p8 x p9 x p10 x p11x

p12 x p13x p14 x p15 x

, Gy = L, Gz = L

x u,v()=

V
T
CxU

VT CyU

VT CzU

Bézier Patch: Matrix Form

62

Bézier Patch: Matrix Form

� Cx stores the coefficients of the bicubic equation for x

� Cy stores the coefficients of the bicubic equation for y

� Cz stores the coefficients of the bicubic equation for z

� Gx stores the geometry (x components of the control points)

� Gy stores the geometry (y components of the control points)

� Gz stores the geometry (z components of the control points)

� BBez is the basis matrix (Bézier basis)

� U and V are the vectors formed from the powers of u and v

� Compact notation

� Leads to efficient method of computation

� Can take advantage of hardware support for 4x4 matrix arithmetic

Properties

� Convex hull: any point on the surface will fall within the convex hull of the
control points

� Interpolates 4 corner points

� Approximates other 12 points, which act as “handles”

� The boundaries of the patch are the Bézier curves defined by the points on
the mesh edges

� The parametric curves are all Bézier curves

63

Tangents of a Bézier patch

� Remember parametric curves x(u,v0), x(u0,v) where v0, u0 is
fixed

� Tangents to surface = tangents to parametric curves

� Tangents are partial derivatives of x(u,v)

� Normal is cross product of the tangents

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
p13

p14

p15

u

v

u0

x

∂x

∂u

∂x

∂vv0

64

Tangents of a Bézier patch
q0 = Bez(u,p0 ,p1,p2 ,p3)

q1 = Bez(u,p4 ,p5 ,p6 ,p7)

q2 = Bez(u,p8 ,p9 ,p10 ,p11)

q3 = Bez(u,p12 ,p13,p14 ,p15)

∂x

∂v
(u,v) = Be ′z (v,q0 ,q1,q2 ,q3)

r0 = Bez(v,p0 ,p4 ,p8 ,p12)

r1 = Bez(v,p1,p5 ,p9 ,p13)

r2 = Bez(v,p2 ,p6 ,p10 ,p14)

r3 = Bez(v,p3,p7 ,p11,p15)

∂x

∂u
(u,v) = Be ′z (u,r0 ,r1,r2 ,r3)

p0
p1

p2

p3

p4 p5

p6

p7

p8
p9

p10

p11

p12
p13

p14

p15

u

v

r0 r1

r2 r3

x

q0

q1

q2

q3

∂x

∂u

∂x

∂v

65

Tessellating a Bézier patch

� Uniform tessellation is most straightforward

� Evaluate points on a grid of u, v coordinates

� Compute tangents at each point, take cross product to get per-vertex
normal

� Draw triangle strips with glBegin(GL_TRIANGLE_STRIP)

� Adaptive tessellation/recursive subdivision

� Potential for “cracks” if patches on opposite sides of an edge divide
differently

� Tricky to get right, but can be done

66

Piecewise Bézier Surface

� Lay out grid of adjacent meshes of control points
� For C0 continuity, must share points on the edge

� Each edge of a Bézier patch is a Bézier curve based only on
the edge mesh points

� So if adjacent meshes share edge points, the patches will line
up exactly

� But we have a crease…

Grid of control points Piecewise Bézier surface
67

C1 Continuity

� We want the parametric curves that cross each edge to
have C1 continuity

� So the handles must be equal-and-opposite across the edge:

http://www.spiritone.com/~english/cyclopedia/patches.html

68

Modeling With Bézier Patches
� Original Utah teapot, from Martin

Newell's PhD thesis, consisted of 28
Bézier patches.

� The original had no rim for the lid and
no bottom

� Later, four more patches were added to
create a bottom, bringing the total to
32

� The data set was used by a number of
people, including graphics guru Jim
Blinn. In a demonstration of a system of
his he scaled the teapot by .75, creating
a stubbier teapot. He found it more
pleasing to the eye, and it was this
scaled version that became the highly
popular dataset used today.

69 Source: http://www.holmes3d.net/graphics/teapot/

Overview

� Bi-linear patch

� Bi-cubic Bézier patch

� Advanced parametric surfaces

70

Problems with Bezier and NURBS Patches

� NURBS surfaces are versatile
� Conic sections

� Can blend, merge, trim…

� But:
� Any surface will be made of

quadrilateral patches (quadrilateral
topology)

� This makes it hard to

� Join or abut curved pieces

� Build surfaces with complex topology
or structure

71

