CSE 190: Virtual Reality Technologies

LECTURE #9: 3D TRACKING TECHNOLOGIES

Upcoming Deadlines

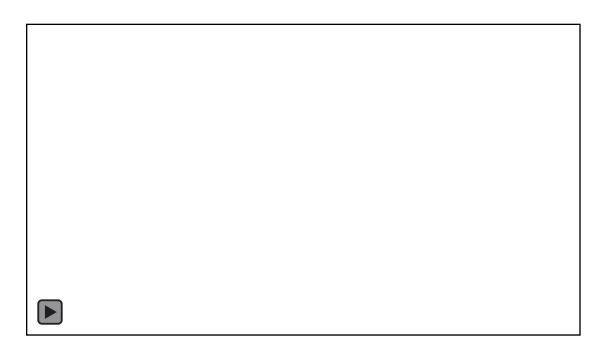
Sunday, May 2: Project 2 due

Monday, May 3: Discussion Project 3

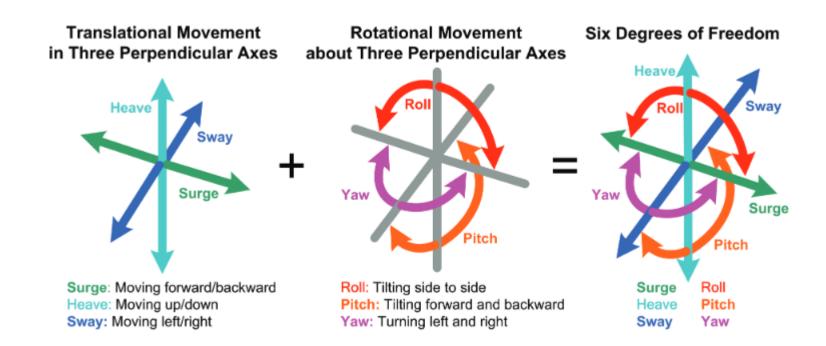
Sunday, May 9: Project 2 late deadline

Monday, May 10: Discussion Project 3

Sunday, May 16: Project 3 due


App Presentations

Nick Mak


Immersed VR

Degrees of Freedom (DOF)

Degrees of Freedom

Overview

Mouse (Relative 2 DOF Position)

2 independent directions control a cursor

Rate of change proportional to force or velocity of motion

Harder to use with larger screen surfaces (e.g., 4k+ or wide screen monitor)

Gyration presentation controller

Touch or Pen-Based Tablets (Absolute 2 DOF Position)

Absolute 2D position

2 DOF

Microsoft Surface Dial

Adds 1 DOF

Absolute 3 DOF Position: GPS

GPS = Global Positioning Satellite system

24 GPS satellites emit synchronized signals

GPS receiver needs to have line of sight connection with 4+ satellites

GPS receivers determine exactly how long it takes for the GPS signals to travel from each satellite

Measures:

- Latitude
- Longitude
- Altitude

Does not directly measure:

- Orientation
- Velocity
- Acceleration

Relative 3 DOF Rotation

Low end HMDs

3 rotational directions:

- Roll
- Pitch
- Yaw

Roll is where the head pivots side to side (i.e. when peeking around a corner)

Pitch is where the head tilts along a vertical axis (i.e. when looking up or down).

Yaw is where the head swivels along a horizontal axis (i.e. when looking left or right)

6-DOF Relative Devices

Relative position and orientation

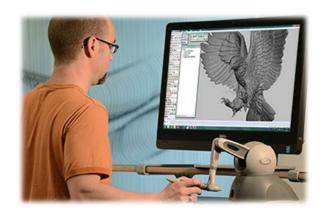
Move a cursor around 3D space

Cursor velocity is proportional to directional force

Spaceball

Space Navigator

Mechanical 6-DOF Tracking


Fakespace Boom: doubles as a stereo display. Options:

- Monochrome BOOM 2
- Two primary color (16-bit color)
 BOOM 2C
- Full color BOOM 3C
- All models are 1280x1024 pixels stereo displays

Geomagic Touch: doubles as a haptic feedback device

Fakespace BOOM

Geomagic Touch

Keyboard, Game Controller

How many DOF?

Overview

Position/Orientation Tracking

- Mechanical Tracking
- Electromagnetic Tracking
- Ultrasonic Tracking
- Inertial Tracking
- Optical Tracking
- Tracking with Radar

Outside-in/Inside-out Tracking

Hand/Finger Tracking

Eye Tracking

Application-specific Input Devices

Mechanical Tracking

Mechanical Tracking

Dependent on a physical link between a fixed reference point and the target

Example: BOOM display

- A HMD is attached on the rear of a mechanical arm with multiple points of articulation
- Detection of orientation and position is done through the arm

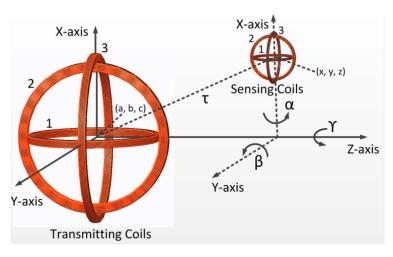
High tracking update rate

Limited range of motion for the user

Electromagnetic Tracking

Electromagnetic Tracking

First used by military and in medical and animation industries


Concept:

- Fixed transmitter generates low-level magnetic field from 3 orthogonal coils
- Fields generate current in smaller receiver unit(s) worn by user
- 6-DOF tracking achieved by analyzing signal strength in receiving coils

Advantage: no line of sight restrictions

Disadvantage: metal in environment can cause interference

Electromagnetic Tracking

There are three pulses of about 2ms each.

The three pulses correspond to each of the three crossed coils in the base – they are pulsed in series.

The receiver coils in the tracked device receive each of the pulses with different amplitudes, depending on the relative orientation of the receiving and transmitting coils.

If their axes are aligned, the corresponding signal is strong. If they are not aligned, the signal is weaker, being weakest when the axes are perpendicular.

Changing the distance of the controller from the base changes the amplitude of all three signals in the same way.

From this information the computer can determine orientation and position of the tracked device.

One of the Earliest VR Tracking Technologies

1990 Ascention Flock of Birds

2011 Razer Hydra

2018 Magic Leap One

Magic Leap One

Flock of Birds

Magic Leap

Magic Leap One

Uses electromagnetic tracking to track controller's position and orientation.

Electromagnetic signal emitter is in controller.

Receiver in on right side of headset. Tracking will probably be worse for left-handed use.

Copper shielding sprayed into the coil housings protects from RF interference, while letting the magnetic field through.

Interference could explain the tracker's placement outside of frame.

Ultrasonic Tracking

Ultrasonic Tracking

Systems measure duration of an ultrasound signal to reach microphones.

InterSense system uses combination of ultrasound and gyroscope.

Problems with echos from walls, people, objects in tracking space.

Logitech 3D Mouse

InterSense IS-900 tracker

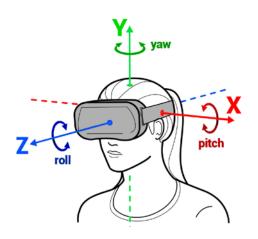
InterSense IS-900 Wand

Inertial Tracking

Inertial Tracking

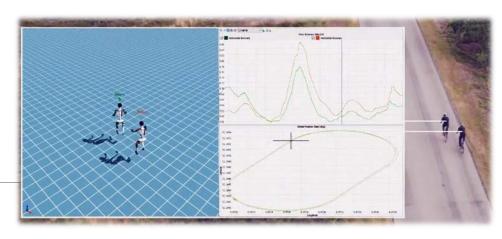
Trackers use **miniature gyroscopes** to measure orientation changes: 3 DOF

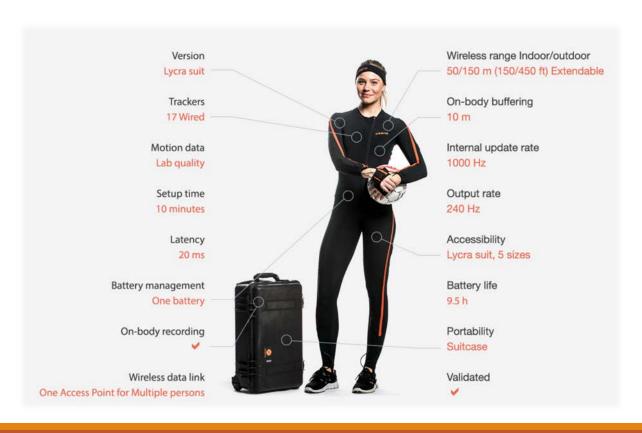
Accelerometers can help calibrate, add position tracking


Advantages:

- No external sensors needed
- Works outdoors
- No limitations on tracking space
- Cheap sensors mass manufactured for smartphones

Disadvantage: drift between actual and reported values, accumulates over time


Gyroscope in Oculus
Rift DK1



3 Rotational DOF

Xsens Motion Tracking

Long range motion tracking

