CSE 167:
 Introduction to Computer Graphics
 Lecture \#4: Vertex Transformation

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Announcements

- Project 2 due Friday, October II
- Compare on-line homework scores to your notes and let us know if they don't match
- To get graded early, please see course assistants during office hours
- New: Friday grading with two sign-up boards in labs 260 and 270
- Changes to office hours

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline

View Volumes

- View volume $=3 \mathrm{D}$ volume seen by camera

Orthographic view volume

World coordinates

Perspective view volume
Camera coordinates

World coordinates

Projection Matrix

Orthographic View Volume

- Specified by 6 parameters:
- Right, left, top, bottom, near, far
- Or, if symmetrical:
, Width, height, near, far

Orthographic Projection Matrix

$\mathbf{P}_{\text {ortho }}$ (right,left,top, bottom,near, far) $=\left[\begin{array}{cccc}\frac{2}{\text { right }- \text { left }} & 0 & 0 & -\frac{\text { right }+ \text { left }}{\text { right }- \text { left }} \\ 0 & \frac{2}{\text { top }- \text { bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\ 0 & 0 & \frac{2}{\text { far -near }} & \frac{\text { far }+ \text { near }}{\text { far }- \text { near }} \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\mathbf{P}_{\text {ortho }} \text { (width, height, near, far) }=\left[\begin{array}{cccc}
\frac{2}{\text { width }} & 0 & 0 & 0 \\
0 & \frac{2}{\text { height }} & 0 & 0 \\
0 & 0 & \frac{2}{\text { far }- \text { near }} & \frac{\text { far }+ \text { near }}{\text { far }- \text { near }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Perspective View Volume

General view volume

- Defined by 6 parameters, in camera coordinates , Left, right, top, bottom boundaries
, Near, far clipping planes
- Clipping planes to avoid numerical problems
- Divide by zero
- Low precision for distant objects
- Usually symmetric, i.e., left=-right, top=-bottom

Perspective View Volume

Symmetrical view volume

- Only 4 parameters
- Vertical field of view (FOV)
- Image aspect ratio (width/height)
- Near, far clipping planes

$$
\begin{aligned}
\text { aspect ratio } & =\frac{\text { right }- \text { left }}{\text { top }- \text { bottom }}=\frac{\text { right }}{\text { top }} \\
\tan (F O V / 2) & =\frac{\text { top }}{\text { near }}
\end{aligned}
$$

Perspective Projection Matrix

- General view frustum with 6 parameters

In OpenGL:
gIFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

- Symmetrical view frustum with field of view, aspect ratio, near and far clip planes

Canonical View Volume

- Goal: create projection matrix so that
- User defined view volume is transformed into canonical view volume: cube $[-1,1] x[-1,1] \times[-1,1]$
- Multiplying corner vertices of view volume by projection matrix and performing homogeneous divide yields corners of canonical view volume
- Perspective and orthographic projection are treated the same way
- Canonical view volume is last stage in which coordinates are in 3D
- Next step is projection to 2D frame buffer

Viewport Transformation

- After applying projection matrix, scene points are in normalized viewing coordinates
- Per definition within range [-1..1] x [-1..1] x [-1..1]
- Next is projection from 3D to 2D (not reversible)
- Normalized viewing coordinates can be mapped to image (=pixel=frame buffer) coordinates
- Range depends on window (view port) size: [x0...x1] x [y0...y1]
- Scale and translation required:

$$
\mathbf{D}\left(x_{0}, x_{1}, y_{0}, y_{1}\right)=\left[\begin{array}{cccc}
\left(x_{1}-x_{0}\right) / 2 & 0 & 0 & \left(x_{0}+x_{1}\right) / 2 \\
0 & \left(y_{1}-y_{0}\right) / 2 & 0 & \left(y_{0}+y_{1}\right) / 2 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\left.\mathbf{D P C} \mathbf{C}^{-1} \mathbf{M}\right|_{\text {Object space }} ^{\mathbf{p}}
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P C} \mathbf{C}^{-1} \left\lvert\, \begin{array}{|c|c|}
\mathbf{M} \\
\mathbf{p o r l d}_{\text {Object space }}
\end{array}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P} \left\lvert\, \begin{aligned}
& \mathbf{C}^{-1} \left\lvert\, \begin{array}{l}
\mathbf{M} \mathbf{p} \\
\text { Object space } \\
\text { World space }
\end{array}\right. \\
& \text { Camera space }
\end{aligned}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D P} \mathbf{C}^{-1} \left\lvert\, \begin{aligned}
& \mathbf{M} \mathbf{p} \\
& \begin{array}{c}
\text { Object space } \\
\text { World space }
\end{array} \\
& \text { Camera space } \\
& \text { Canonical view volume }
\end{aligned}\right.
$$

- M: Object-to-world matrix
- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\mathbf{p}^{\prime}=\mathbf{D} \mathbf{P} \mathbf{C}^{-1} \mathbf{M}_{\text {Object space }}
$$

World space
Camera space
Canonical view volume Image space
, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix
- D: viewport matrix

Complete Vertex Transformation

- Mapping a 3D point in object coordinates to pixel coordinates:

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{D P C}^{-1} \mathbf{M} \mathbf{p} \\
\mathbf{p}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right] \quad \text { Pixel coordinates: } \begin{array}{l}
x^{\prime} / w^{\prime} \\
y^{\prime} / w^{\prime}
\end{array}
\end{gathered}
$$

, M: Object-to-world matrix

- C: camera matrix
- P: projection matrix
- D: viewport matrix

The Complete Vertex Transformation

Complete Vertex Transformation in OpenGL

- Mapping a 3D point in object coordinates to pixel coordinates:

OpenGL GL_MODELVIEW matrix
$$
\mathbf{p}^{\prime}=\mathbf{D P C}{ }^{-1} \mathbf{M} \mathbf{p}
$$
OpenGL GL_PROJECTION matrix

- M: Object-to-world matrix
- C: camera matrix
| P: projection matrix
- D: viewport matrix

Complete Vertex Transformation in OpenGL

- GL_MODELVIEW, C-1M
- Defined by the programmer.
- Think of the ModelView matrix as where you stand with the camera and the direction you point it.
- GL_PROJECTION, P
- Utility routines to set it by specifying view volume: gIFrustum(), glPerspective(), glOrtho()
- Think of the projection matrix as describing the attributes of your camera, such as field of view, focal length, etc.
- Viewport, D
- Specify implicitly via glViewport()
- No direct access with equivalent to GL_MODELVIEW or GL_PROJECTION

Lecture Overview

- View Volumes
- Vertex Transformation
- Rendering Pipeline

Rendering Pipeline

- Hardware and software which draws 3D scenes on the screen
- Consists of several stages - Simplified version here
- Most operations performed by specialized hardware (GPU)
- Access to hardware through low-level 3D API (OpenGL, DirectX)
- All scene data flows through the pipeline at least once for each frame

Rendering Pipeline

Scene data

, Textures, lights, etc.

- Geometry
, Vertices and how they are connected
- Triangles, lines, points, triangle strips
- Attributes such as color
- Specified in object coordinates
- Processed by the rendering pipeline one-by-one

(

Rendering Pipeline

- Transform object to camera coordinates
- Specified by

GL_MODELVIEW matrix in OpenGL

- User computes

GL_MODELVIEW matrix as discussed

$$
\mathbf{p}_{\text {camera }}=\underset{\substack{\text { MODELVIEW } \\ \text { matrix }}}{\mathbf{C}^{-1} \mathbf{M} \mathbf{p}_{\text {object }}}
$$

Rendering Pipeline

- Look up light sources
- Compute color for each vertex

Rendering Pipeline

- Project 3D vertices to 2D image positions
- GL_PROJECTION matrix

Rendering Pipeline

- Draw primitives (triangles, lines, etc.)
- Determine what is visible

Rendering Pipeline

- Pixel colors

Rendering Engine

Rendering Engine:

- Additional software layer encapsulating low-level API
- Higher level functionality than OpenGL
- Platform independent
- Layered software architecture common in industry
- Game engines
- Graphics middleware

