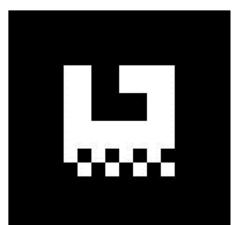
Winter 2013

CSE 190: 3D User Interaction

Lecture #6: Input Devices Part 2 Jürgen P. Schulze, Ph.D.

CSE190 3DUI - Winter 2013

Announcements


• Homework assignment #2 due Friday, February 8th at 1pm

Optical Tracking: ARToolKit

- Developed in 1999 by Hirokazo Kato, HITLab, University of Washington
- Printable markers
- Camera based (webcam sufficient)
- Flexible marker design
- Simple programming interface
- 6 DOF tracking possible

ARToolKit

CSE190 3DUI - Winter 2013

Video

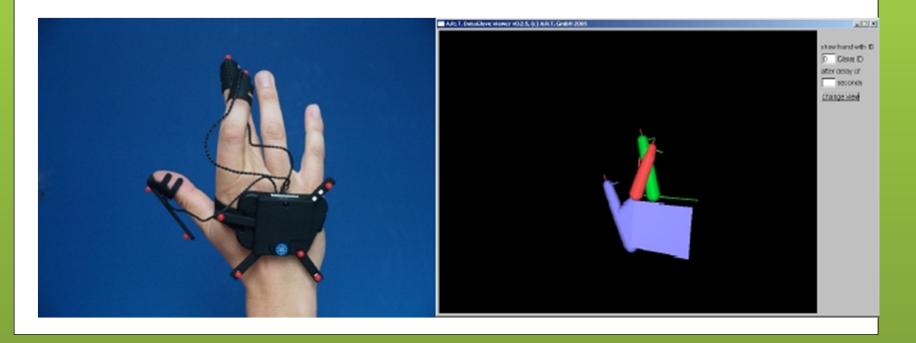
• Augmented Reality by Hitlab

• http://www.frequency.com/video/augmen ted-reality-by-hitlab/2556268

Optical Tracking: Mocap Devices

- Infrared (IR) cameras illuminate scene for easier detection of markers
- Multiple markers (highly reflective spheres) arranged in fixed, known configurations allow for 6 DOF tracking

ART Tracking System



Vicon Tracking System Mosquito Aedes Aegypti,

carries the dengue virus

Optical Finger Tracking

Extension of ART systemTracks three fingers and the hand

Optical Tracking: HiBall

- HiBall-3100 tracker system by 3rd Tech, based on Wide-Area Tracking research project of Department of Computer Science of UNC Chapel Hill
- System is composed of:
 - HiBall Optical Sensor
 - HiBall Ceiling Beacon Arrays
- HiBall Optical Sensor is composed of 6 lenses and photodiodes arranged so that each photodiode can 'view' infrared LEDs in the Beacon Arrays mounted on the ceiling, through several of the 6 lenses.
- Tracker update rate: 2,000 Hz
- No metal or sound interference

HiBall beacon array

Ultrasonic Tracking

Intersense

- Systems measure duration of an ultrasound signal to reach microphones.
- Intersense system uses combination of ultrasound and gyroscope.

Logitech

Hybrid Devices: Haptic Feedback Devices

Immersion CyberForce

- PHANToM haptic device
- Force feedback joystick
- Exoskeleton-like devices

LEXOS: Frisoli et. al., Italy

SensAble PHANToM

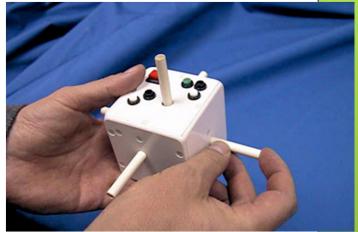
Tracking Devices: Bend-Sensing Gloves

- CyberGlove, 5DT
 Reports hand posture
 Gesture:

 single posture
 series of postures
 - posture(s) + location or motion

Pinch Glove

- Pinch Gloves
 - Determine if two or more fingertips are touching
 - Use conductive cloth to close circuit
 - Tethered to controller box
 - Designed for pinching and grabbing gestures
 - Recognize any gesture of 2 to 10 fingers, plus combinations of gestures
 - Price at the time \$2000
 - Had problems with reliability



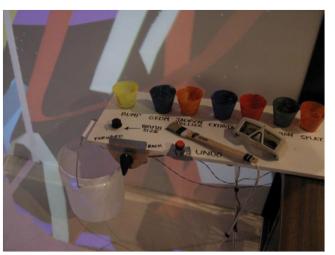
www.fakespacelabs.com

Special Purpose Device: Cubic Mouse

- Developed 1999 at Fraunhofer IMK by B. Frohlich and J. Plate
- Cube shaped box with three rods represents a physical coordinate system prop
- 6DOF tracker is inside cube
- Rods used to manipulate x-, y-, and z- coordinates of an object (for example a cutting plane)
- Major application area: volume rendering for oil and gas industry

Application-Specific Devices

- Virtual Hang-gliding over Rio de Janeiro, L. Soares at. al.
- Virtual canoe, Siggraph 2005: Realtime water simulator with pre-computed database of 3D fluid dynamics. Creates realistic wakes and force feedback of water resistance.



Cave Painting

- Physical props (brush, color palette, bucket) allow intuitive painting
- By Daniel Keefe, Brown University (now Univ. of Minnesota), ACM Symposium on Interactive 3D Graphics, 2001

3D Input Devices Today

Razer Hydra

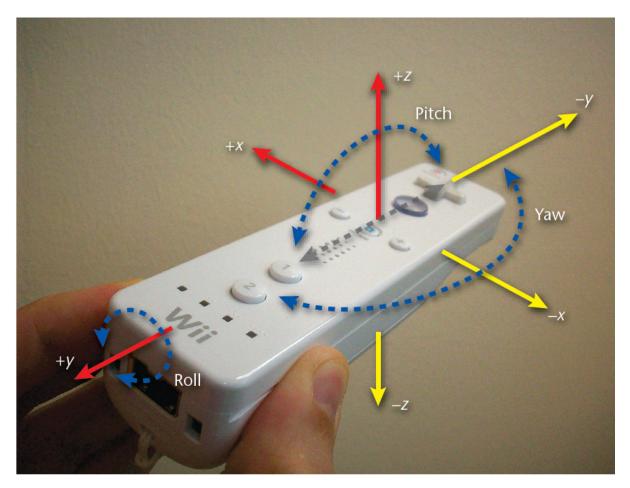
Gaming devices at consumer prices!

Leap Motion

Microsoft Kinect

Video game motion controllers

- Nintendo Wiimote
 Microsoft Kinect
- PlayStation Move


The Wiimote Device

• Wiimote features

- Uses Bluetooth for communication
- Senses acceleration along 3 axes
- Optical sensor for pointing, with sensor bar
- Provides audio and rumble feedback
- Standard buttons and trigger
- Runs on 2 AA batteries
- Supports two-handed interaction
 - 2 Wiimotes can be active simultaneously

The Wiimote – Coordinates

The Wiimote – Optical Data

Data from optical sensor

- o uses sensor bar
 - 10 LED lights (5 of each side)
 - accurate up to 5 meters
- triangulation to determine depth
 - distance between two points on image sensor (variable)
 distance between LEDs on sensor bar (fixed)
- roll (with respect to ground) angle can be calculated from angle of two image sensor points
- Advantages
 - provides a pointing tool
 - gives approximate depth
- Disadvantages
 - line of sight, infrared light problems
 - only constrained rotation understanding

The Wiimote – Motion Data

- Data from 3-axis accelerometer
 - senses instantaneous acceleration on device (i.e., force) along each axis
 - arbitrary units (+/- 3g)

 - always sensing gravity
 at rest acceleration is g (upward)
 freefall acceleration is 0

 - finding position and orientation

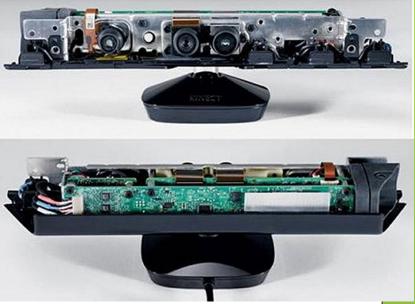
 at rest roll and pitch can be calculated ea
 in motion math gets more complex
 error accumulation causes problems
 often not needed gestures sufficient
- Advantages
 - easily detect course motions mimic many natural actions
- Disadvantages
 - ambiguity issues
 - player cheating
 - not precise (not a 6 DOF tracker)

The Wii Motion Plus

Current Wiimote device

- o gives user useful data
- not perfect
 - ambiguities
 - poor range
 - constrained input
- Wii Motion Plus
 - moving toward better device
 - finer control
 - o uses dual axis angular rate gyroscope
 - Captures true orientation

Microsoft Kinect


• Kinect features

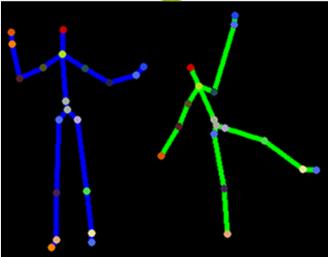
- RGB camera
- depth sensors
- multi-array mic
- motorized tilt
- connects via USB
- Supports controllerless interface
- Full body tracking
- 2 versions: for Xbox (\$100) and PC (\$250)

Kinect – Hardware Details

- RGB Camera
 - 640 x 480 resolution at 30Hz
- Depth Sensor
 - complimentary metal-oxide semiconductor (CMOS) sensor (30 Hz)
 - infrared laser projector
 - 850mm to 4000mm distance range
 - Windows version has shorter range
- Multi-array mic
 - set of four microphones
 - multi-channel echo cancellation
 - sound position tracing
- Motorized tilt
 - 27° up or down

www.hardwaresphere.com

Kinect – Extracting 3D Depth


- Infrared laser projector emits known dot pattern
- CMOS sensor reads depth of all pixels
 - 2D array of active pixel sensors
 photo detector
 - active amplifier
- Finds location of dots
- Computes depth information using stereo triangulation
 - normally needs two cameras
 - laser projector acts as second camera
- Depth image generation

Kinect – Skeleton Tracking

- Combines depth information with human body kinematics
 - 20 joint positions
- Object recognition approach
 - per pixel classification
 - decision forests (GPU)
 - millions of training samples

Kinect Programming

- Two main approaches

 - NITE and Open NI
 Microsoft Kinect SDK

Kinect – Microsoft SDK

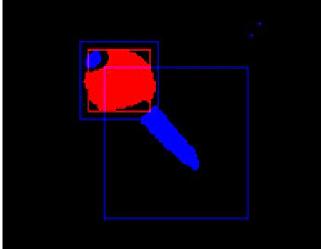
- Uses subset of technology from Xbox 360 developer version
- Access to microphone array
- Sound source localization (beam forming)
 connection with Microsoft Speech SDK
- Kinect depth data
- Raw audio and video data
- Access to tilt motor
- Skeleton tracking for up to two people
- Examples and documentation

PlayStation Move

- Consists of
 - Playstation Eye
 - 1 to 4 Motion controllers
 - Eye + 1 controller = ca. \$80
- Features
 - combines camera tracking with motion sensing
 - 6 DOF tracking (position and orientation)
 - several buttons on front of device
 - analog T button on back of device
 - vibration feedback
 - wireless

PlayStation Move – Hardware

• PlayStation Eye


- 640 x 480 (60Hz)
- 320 x 240 (120Hz)
- microphone array
- Move Controller
 - 3 axis accelerometer
 - 3 axis angular rate gyro
 - magnetometer (helps to calibrate and correct for drift)
 - 44mm diameter sphere with RGB LED
 - used for position recovery
 - invariant to rotation
 - own light source
 - color ensures visual uniqueness

www.hardwaresphere.com

PlayStation Move – 6 DOF Tracking

- Image Analysis
 - find sphere in image
 - segmentation
 - label every pixel being tracked
 - saturated colors more robust
 - pose recovery
 - convert 2D image to 3D pose
 - robust for certain shapes (e.g., sphere)
 - fit model to sphere projection
 - size and location used as starting point
 - 2D perspective projection of sphere is ellipse
 - given focal length and size of sphere, 3D position possible directly from 2D ellipse parameters

PlayStation Move – 6 DOF Tracking

• Sensor Fusion

- combines results from image analysis with inertial sensors (Unscented Kalman Filter)
- contributions
 - camera absolute 3D position
 - o accelerometer
 - pitch and roll angles (when controller is stationary)
 - controller acceleration (when orientation is known)
 - reduce noise in 3D position and determine linear velocity
 - gyroscope
 - angular velocity to 3D rotation
 - angular acceleration

Leap Motion

- Short range finger tracking
 - To date no access to depth map
- Inexpensive (\$70 on pre-order)
- Not yet available (promised for early 2014)
- SDK available today
- Developer units being shipped
- More and more demo videos available

CSE190 3DUI - Winter 2013

Video

Leap Motion promotional video
 https://www.leapmotion.com/