CSE 190: 3D User Interaction

Lecture #8: Wayfinding Jürgen P. Schulze, Ph.D.

Announcements

- Homework assignment #2 due Friday, February 8th at 1pm in Sequoia lab 142
 - This time grading starts at 12 noon
 - Calit2 tour starts at 1pm
- Reminder: paper presentations
 - Next lecture:
 - Vivek
 - o Joey
 - Matteo: A discussion of cybersickness in virtual environments

Rotational Mappings

- Most covered interaction techniques deal only with selection and translation
- Many do not work well for rotations
- Rotation options:
 - Direct mapping of object rotation to rotation of device
 - Can cause clutching: repeated grabbing and releasing of object to rotate further than wrist allows
 - Tracking jitter can make small rotations difficult
 - Rotation amplification or slow-down

Rotation Calculations

- Simplest way to calculate rotations: Euler angles
- Euler angles define rotation by 3 rotations about coordinate axes
- Typical problem with Euler angles: Gimbal Lock, occurs in certain object orientations
 - Video (play until 1:12)
 - http://www.youtube.com/watch?v=zc8b2Jo7mno
- Better than Euler angles: 4x4 rotation matrices
 - Problem: 16 numbers required to specify rotation
- Quaternions: greatly improve rotation calculations

Quaternions

- OSG defines mathematical operators for quaternions to add, subtract, multiply, etc.
- In OSG, quaternions can be specified by rotation angle and axis:
 - osg::Quat(value_type angle, const Vec3d &axis)
- Or mathematically:
 - o osg::Quat(value_type x, value_type y, value_type z, value_type w)

Quaternion Definition

- [w, x, y, z]
 - \circ w = cos(a/2)
 - x = sin(a/2) * nx
 - y = sin(a/2) * ny
 - z = sin(a/2) * nz
- a: angle of rotation
- {nx,ny,nz}: normalized axis of rotation

Useful Quaternions

w	x	у	Z	Description
1	0	0	0	Identity quaternion, no rotation
0	1	0	0	180° turn around X axis
0	0	1	0	180° turn around Y axis
0	0	0	1	180° turn around Z axis
sqrt(0.5)	sqrt(0.5)	0	0	90° rotation around X axis
sqrt(0.5)	0	sqrt(0.5)	0	90° rotation around Y axis
sqrt(0.5)	0	0	sqrt(0.5)	90° rotation around Z axis
sqrt(0.5)	-sqrt(0.5)	0	0	-90° rotation around X axis
sqrt(0.5)	0	-sqrt(0.5)	0	-90° rotation around Y axis
sqrt(0.5)	0	0	-sqrt(0.5)	-90° rotation around Z axis

Quaternions: Further Reading

• Quaternions in Ogre3D:

• http://www.ogre3d.org/tikiwiki/Quaternion+ and+Rotation+Primer

• Quaternions in OSG:

 http://www.openscenegraph.org/projects/ osg/wiki/Support/Maths/QuaternionMaths

Navigation

Wayfinding – Motor Component

Wayfinding

- Cognitive process of defining a path through an environment
 - use and acquire spatial knowledge
 - o aided by natural and artificial cues
- Common activity in our daily lives
- Often unconscious activity (not when we are lost)

Information for the Wayfinding Task

- Landmarks
- Signs
- Maps
- Directional information

Transferring Spatial Knowledge

- Want to transfer knowledge to the real world
 - training
 - planning
- Navigation through complex environments to support other tasks

Wayfinding in 3DUIs

- Difficult problem
- Differences between wayfinding in real world and virtual world
 - o unconstrained movement
 - absence of physical constraints
 - o lack of realistic motion cues
- 3DUIs can provide a wealth of information

Wayfinding as Decision Making Process

Wayfinding and Travel

- Exploration
 - browsing environment
 - o useful in building cognitive map
- Search
 - spatial knowledge acquired and used
 - naïve search not enough info in cognitive map
 - primed search use of cognitive map defines success
- Maneuvering
 - uses very little of cognitive map

Wayfinding and Spatial Knowledge

- Landmark knowledge
 - visual characteristics of environment
 - shape, size, and texture
- Procedural knowledge
 - o sequence of actions required to follow a path
 - requires sparse visual information
- Survey knowledge
 - topographical knowledge
 - object location/distance/orientation

Egocentric and Exocentric Reference Frames

- Egomotion feeling we are the center of space
- Egocentric first person
 - relative to human body
- Exocentric third person
 - relative to world
- Build up exocentric representation of world
 - survey knowledge
- Use egocentric when exploring for first time
 - landmark/procedural knowledge

User-Centered Wayfinding Support (1)

- Field of view
 - small FOV can inhibit wayfinding
 - user requires repetitive head movements
 - lack of optical flow in periphery
- Motion cues
 - enable judgment of depth and direction
 - supports dead reckoning (backtracking of user's own movement)
 - cue conflicts can hinder cognitive map development
- Multisensory Output
 - o audio
 - Tactile maps

User-Centered Wayfinding Support (2)

- Presence (feeling of "being there")
 - o assumed to have impact on spatial knowledge
 - o closer to real world
- Search strategies

Environment-Centered Wayfinding Support

- Environmental design
- Artificial aids

Environmental Design (1)

- World's structure and format can aid in wayfinding
- Legibility techniques
 - divide large scale environment into parts with distinct character
 - create simple spatial organization
 - include directional cues to support egocentric/exocentric reference frames
 - o often repetitive

Environmental Design (2)

Environmental Design (3)

- Natural environment
 - horizon, atmospheric color, fog, etc...
- Architectural design
 - lighting
 - closed and open spaces
- Color and texture

Artificial Cues

- Maps
- Compasses
- Signs
- Reference objects
- Artificial landmarks
- Trails

Maps (1)

Maps (2)

Maps (3)

Maps (4)

Compasses

Signs

Reference Objects

Objects that have well known size
chair, human figure, etc...
Useful to estimate distances

Artificial Landmarks

- Local help users in decision making processes
- Global seen from any location

Trails

• Help user retrace steps

• Show what parts have been visited