CSE 167:

Introduction to Computer Graphics Lecture #5: Illumination Model

Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

Announcements

Project 2 due next Friday at 2pm

Shading

- Compute interaction of light with surfaces
- Requires simulation of physics
- "Global illumination"
 - Multiple bounces of light
 - Computationally expensive, minutes per image
 - Used in movies, architectural design, etc.

Global Illumination

Interactive Applications

- No physics-based simulation
- Simplified models
- Reproduce perceptually most important effects
- Local illumination
 - Only one bounce of light between light source and viewer

Rendering Pipeline

Scene data Modeling and viewing transformation Shading **Projection** Scan conversion, visibility **Image**

- Position object in 3D
- Determine colors of vertices
 - Per vertex shading
- Map triangles to 2D
- Draw triangles
 - Per pixel shading

Lecture Overview

OpenGL's local shading model

- What gives a material its color?
- How is light reflected by a
 - Mirror
 - White sheet of paper
 - Blue sheet of paper
 - Glossy metal

- Model reflection of light at surfaces
 - Assumption: no subsurface scattering
- ▶ Bidirectional reflectance distribution function (BRDF)
 - Given light direction, viewing direction, how much light is reflected towards the viewer
 - For any pair of light/viewing directions!

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

- Ideal diffuse material reflects light equally in all directions
- View-independent
- Matte, not shiny materials
 - Paper
 - Unfinished wood
 - Unpolished stone

- Beam of parallel rays shining on a surface
 - Area covered by beam varies with the angle between the beam and the normal
 - The larger the area, the less incident light per area
 - Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
- Object darkens as normal turns away from light
- Lambert's cosine law (Johann Heinrich Lambert, 1760)
- Diffuse surfaces are also called Lambertian surfaces

Given

- Unit surface normal n
- Unit light direction L
- Material diffuse reflectance (material color) k_d
- Light color (intensity) c_l
- ▶ Diffuse color c_d is:

$$c_d = c_l k_d(\mathbf{n} \cdot \mathbf{L})$$

Proportional to cosine between normal and light

Notes

- Parameters k_d , c_l are r,g,b vectors
- Need to compute r,g,b values of diffuse color c_d separately
- Parameters in this model have no precise physical meaning
 - c_l: strength, color of light source
 - k_d : fraction of reflected light, material color

- Provides visual cues
 - Surface curvature
 - Depth variation

Lambertian (diffuse) sphere under different lighting directions

OpenGL

- Lights (glLight*)
 - Values for light: $(0,0,0) \le c_l \le (1,1,1)$
 - ▶ Definition: (0,0,0) is black, (1,1,1) is white
- OpenGL
 - Values for diffuse reflection
 - Fraction of reflected light: $(0,0,0) \le k_d \le (1,1,1)$
- ▶ Consult OpenGL Programming Guide (Red Book)
 - See course web site

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Specular Reflection

Shiny surfaces

- Polished metal
- Glossy car finish
- Plastics

Specular highlight

- Blurred reflection of the light source
- Position of highlight depends on viewing direction

Specular highlight

Specular Reflection

- Ideal specular reflection is mirror reflection
 - Perfectly smooth surface
 - Incoming light ray is bounced in single direction
 - Angle of incidence equals angle of reflection

Law of Reflection

▶ Angle of incidence equals angle of reflection

Specular Reflection

- Many materials are not perfect mirrors
 - Glossy materials

Glossy teapot

Glossy Materials

- Assume surface composed of small mirrors with random orientation (micro-facets)
- Smooth surfaces
 - Micro-facet normals close to surface normal
 - Sharp highlights
- Rough surfaces
 - Micro-facet normals vary strongly
 - Blurry highlight

Polished
Smooth
Rough
Very rough

Glossy Surfaces

- Expect most light to be reflected in mirror direction
- Because of micro-facets, some light is reflected slightly off ideal reflection direction
- Reflection
 - Brightest when view vector is aligned with reflection
 - Decreases as angle between view vector and reflection direction increases

Phong Shading Model

- Developed by Bui Tuong Phong in 1973
- \triangleright Specular reflectance coefficient k_s
- Phong exponent p
 - Greater p means smaller (sharper) highlight

Phong Shading Model

Blinn Shading Model (Jim Blinn, 1977)

- Modification of Phong Shading Model
- Defines unit halfway vector $\mathbf{h} = \frac{\mathbf{L} + \mathbf{e}}{\|\mathbf{L} + \mathbf{e}\|}$

$$\mathbf{h} = rac{\mathbf{L} + \mathbf{e}}{\|\mathbf{L} + \mathbf{e}\|}$$

Halfway vector represents normal of micro-facet that would lead to mirror reflection to the eye

Blinn Shading Model

- The larger the angle between micro-facet orientation and normal, the less likely
- Use cosine of angle between them
- Shininess parameter s
- Very similar to Phong Model

Simplified model

- Sum of 3 components
- Covers a large class of real surfaces

Ambient Light

- In real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
 - Add constant ambient light at each point: $k_a c_a$
 - Ambient light color: c_a
 - ightharpoonup Ambient reflection coefficient: k_a
- Areas with no direct illumination are not completely dark

Complete Blinn-Phong Shading Model

- Blinn-Phong model with several light sources I
- All colors and reflection coefficients are vectors with 3 components for red, green, blue

Lecture Overview

- OpenGL Light Sources
 - Directional Lights
 - Point Lights
 - Spot Lights

Light Sources

- Real light sources can have complex properties
 - Geometric area over which light is produced
 - Anisotropy (directionally dependent)
 - Reflective surfaces act as light sources (indirect light)

 OpenGL uses a drastically simplified model to allow real-time rendering

OpenGL Light Sources

- At each point on surfaces we need to know
 - Direction of incoming light (the L vector)
 - Intensity of incoming light (the c_l values)
- Standard light sources in OpenGL
 - Directional: from a specific direction
 - Point light source: from a specific point
 - Spotlight: from a specific point with intensity that depends on direction

Lecture Overview

- OpenGL Light Sources
 - Directional Lights
 - Point Lights
 - Spot Lights

Directional Light

- Light from a distant source
 - Light rays are parallel
 - Direction and intensity are the same everywhere
 - As if the source were infinitely far away
 - Good approximation of sunlight
- Specified by a unit length direction vector, and a color

Lecture Overview

- OpenGL Light Sources
 - Directional Lights
 - Point Lights
 - Spot Lights

Point Lights

- Similar to light bulbs
- Infinitely small point radiates light equally in all directions
 - Light vector varies across receiving surface
 - What is light intensity over distance proportional to?
 - Intensity drops off proportionally to the inverse square of the distance from the light
 - Reason for inverse square falloff: Surface area A of sphere:

$$A = 4 \pi r^2$$

Point Lights in Theory

At any point v on the surface:

$$\mathbf{L} = \frac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|}$$

$$c_l = \frac{c_{src}}{\|\mathbf{p} - \mathbf{v}\|^2}$$

Point Lights in OpenGL

OpenGL model for distance attenuation:

$$c_{l} = \frac{c_{src}}{k_{c} + k_{l} \left| \mathbf{p} - \mathbf{v} \right| + k_{q} \left| \mathbf{p} - \mathbf{v} \right|^{2}}$$

- Attenuation parameters:
 - $k_c = constant attenuation, default: I$
 - k_1 = linear attenuation, default: 0
 - k_q = quadratic attenuation, default: 0
- ▶ Default: no attenuation: $c_1 = c_{src}$
- ▶ Change attenuation parameters with:
 - GL_CONSTANT_ATTENUATION
 - GL_LINEAR_ATTENUATION
 - GL QUADRATIC ATTENUATION

Lecture Overview

- OpenGL Light Sources
 - Directional Lights
 - Point Lights
 - Spot Lights

Spotlights

Like point source, but intensity depends on direction

Parameters

- Position: location of light source
- Spot direction: center axis of light source
- ▶ Falloff parameters:
 - Beam width (cone angle)
 - The way the light tapers off at the edges of the beam (cosine exponent)

Spotlights

Receiving surface

$$\mathbf{L} = \frac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|}$$

$$c_l = \begin{cases} 0 & \text{if } -\mathbf{L} \cdot \mathbf{d} \leq \cos(\theta_{max}) \\ c_{src} (-\mathbf{L} \cdot \mathbf{d})^f & \text{otherwise} \end{cases}$$

Spotlights

Photograph of real spotlight

Spotlights in OpenGL

