CSE 167:
 Introduction to Computer Graphics Lecture 12: Bézier Curves

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Announcements

- Homework assignment 5 due tomorrow,

Nov 8 at I:30pm

- Late submissions for assignment 4 will be accepted

CSE 169: Computer Animation

- Most recent course web site is from 2009:
- http://graphics.ucsd.edu/courses/csel69_w09
- PixelActive’s CityScape:
- http://www.youtube.com/watch?v=yrgm9qK_Mlo

CSE 190: Shader Programming

- Instructor:Wolfgang Engel, CEO and Co-Founder of Confetti Interactive
- Lecture topics:
- Introduction to DirectX II.I Compute
- Simple Compute Case Studies
- DirectCompute performance optimization
- Direct3D II.I Graphics Pipeline
- Physically Based Lighting
- Deferred Lighting,AA
- Shadows
- Order-Independent Transparency
- Global Illumination Algorithms in Games

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Modeling

- Creating 3D objects
- How to construct complex surfaces?
- Goal
, Specify objects with control points
- Objects should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces
- Next: What can curves be used for?

Curves

- Surface of revolution

Curves

- Extruded/swept surfaces

Curves

- Animation
- Provide a "track" for objects
- Use as camera path

Video

- Bezier Curves

- http://www.youtube.com/watch? v=hIDYJNEiYvU

Curves

- Can be generalized to surface patches

Curve Representation

- Specify many points along a curve, connect with lines?
- Difficult to get precise, smooth results across magnification levels
- Large storage and CPU requirements
- How many points are enough?
- Specify a curve using a small number of "control points"
- Known as a spline curve or just spline

Spline: Definition

- Wikipedia:
- Term comes from flexible spline devices used by shipbuilders and draftsmen to draw smooth shapes.
- Spline consists of a long strip fixed in position at a number of points that relaxes to form a smooth curve passing through those points.

Interpolating Control Points

- "Interpolating" means that curve goes through all control points
- Seems most intuitive
- Surprisingly, not usually the best choice
- Hard to predict behavior
- Hard to get aesthetically pleasing curves

Approximating Control Points

- Curve is "influenced" by control points
- Various types
- Most common: polynomial functions
- Bézier spline (our focus)
- B-spline (generalization of Bézier spline)
- NURBS (Non Uniform Rational Basis Spline): used in CAD tools

Mathematical Definition

- A vector valued function of one variable $\mathbf{x}(t)$
- Given t, compute a 3D point $\mathbf{x}=(x, y, z)$
- Could be interpreted as three functions: $x(t), y(t), \mathrm{z}(t)$
- Parameter t"moves a point along the curve"

Tangent Vector

- Derivative $\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- Vector x' points in direction of movement
- Length corresponds to speed
$\rightarrow \mathbf{x}(t)$

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Polynomial Functions

- Linear:

$$
f(t)=a t+b
$$ (${ }^{\text {st }}$ order)

- Quadratic: $\quad f(t)=a t^{2}+b t+c$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad f(t)=a t^{3}+b t^{2}+c t+d$ (3rd order)

Polynomial Curves

- Linear $\mathbf{x}(t)=\mathbf{a} t+\mathbf{b}$

$$
\mathbf{x}=(x, y, z), \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

- Evaluated as:

$$
\begin{aligned}
& x(t)=a_{x} t+b_{x} \\
& y(t)=a_{y} t+b_{y} \\
& z(t)=a_{z} t+b_{z}
\end{aligned}
$$

Polynomial Curves

Quadratic: $\quad \mathbf{x}(t)=\mathbf{a} t^{2}+\mathbf{b} t+\mathbf{c}$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\quad \mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}$ (3 ${ }^{\text {rd }}$ order)

- We usually define the curve for $0 \leq t \leq$ I

Control Points

- Polynomial coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ can be interpreted as control points
- Remember: a, b, c, d have x, y, z components each
- Unfortunately, they do not intuitively describe the shape of the curve
- Goal: intuitive control points

Control Points

- How many control points?
- Two points define a line ($I^{\text {st }}$ order)
- Three points define a quadratic curve ($2^{\text {nd }}$ order)
- Four points define a cubic curve ($3^{\text {rd }}$ order)
- $k+l$ points define a k-order curve
- Let's start with a line...

First Order Curve

- Based on linear interpolation (LERP)
- Weighted average between two values
" "Value" could be a number, vector, color, ...
- Interpolate between points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ with parameter t
- Defines a "curve" that is straight (first-order spline)
- $t=0$ corresponds to $\mathbf{p}_{\mathbf{0}}$
- $t=1$ corresponds to $\mathbf{p}_{\mathbf{1}}$
- $t=0.5$ corresponds to midpoint

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
$$

Linear Interpolation

Three equivalent ways to write it

- Expose different properties
I. Regroup for points \mathbf{p}

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t
$$

2. Regroup for t

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
$$

3. Matrix form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Weighted Average

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t) \mathbf{p}_{0}+\quad(t) \mathbf{p}_{1} \\
& =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}, \text { where } B_{0}(t)=1-t \text { and } B_{1}(t)=t
\end{aligned}
$$

- Weights are a function of t
- Sum is always I, for any value of t
- Also known as blending functions

Linear Polynomial

$$
\mathbf{x}(t)=\underbrace{\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)}_{\begin{array}{c}
\text { vector } \\
\mathbf{a}
\end{array}} t+\underbrace{\mathbf{b}}_{\text {point }} \mathbf{\mathbf { p } _ { 0 }}
$$

- Curve is based at point $\mathbf{p}_{\mathbf{0}}$
- Add the vector, scaled by t

Matrix Form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\mathbf{G B T}
$$

- Geometry matrix $\quad \mathbf{G}=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]$
- Geometric basis

$$
\mathbf{B}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

- Polynomial basis

$$
T=\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

- In components

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
p_{0 x} & p_{1 x} \\
p_{0 y} & p_{1 y} \\
p_{0 z} & p_{1 z}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
t \\
1
\end{array}\right]
$$

Tangent

- For a straight line, the tangent is constant

$$
\mathbf{x}^{\prime}(t)=\mathbf{p}_{1}-\mathbf{p}_{0}
$$

- Weighted average $\mathbf{x}^{\prime}(t)=(-1) \mathbf{p}_{0}+(+1) \mathbf{p}_{1}$
- Polynomial

$$
\mathbf{x}^{\prime}(t)=0 t+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

- Matrix form $\quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}\mathbf{p}_{0} & \mathbf{p}_{1}\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Bézier Curves

- Are a higher order extension of linear interpolation

Bézier Curves

- Give intuitive control over curve with control points
- Endpoints are interpolated, intermediate points are approximated
- Convex Hull property
- Many demo applets online, for example:
- Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html
- http://www.theparticle.com/applets/nyu/BezierApplet/
- http://www.sunsite.ubc.ca/LivingMathematics/V00IN0I/UBCExamples/B ezier/bezier.html

Cubic Bézier Curve

- Most commonly used case
- Defined by four control points:
* Two interpolated endpoints (points are on the curve)
- Two points control the tangents at the endpoints
- Points \mathbf{x} on curve defined as function of parameter t

Algorithmic Construction

- Algorithmic construction

De Casteljau algorithm, developed at Citroen in 1959, named after its inventor Paul de Casteljau (pronounced "Cast-all-’Joe")

- Developed independently from Bézier's work: Bézier created the formulation using blending functions, Casteljau devised the recursive interpolation algorithm

De Casteljau Algorithm

- A recursive series of linear interpolations
- Works for any order Bezier function, not only cubic
- Not very efficient to evaluate
- Other forms more commonly used
- But:
- Gives intuition about the geometry
- Useful for subdivision

De Casteljau Algorithm

- Given:
- Four control points
- A value of t (here $t \approx 0.25$)

De Casteljau Algorithm

De Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)
\end{aligned}
$$

De Casteljau Algorithm

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
$$

De Casteljau Algorithm

- Applets
- Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html
- http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html

Recursive Linear Interpolation

$$
\begin{aligned}
& \mathbf{r}_{0}=\operatorname{Lerp}\left(t, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \\
& \mathbf{r}_{1}=\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right)
\end{aligned} \mathbf{q}_{\mathbf{q}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)}=\begin{aligned}
& \mathbf{p}_{2} \\
& \mathbf{p}_{2}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)
\end{aligned} \mathbf{p}_{2}^{\mathbf{p}_{0}} \mathbf{p}_{3}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}
\end{aligned}
$$

$$
\mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)
$$

$$
\mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)
$$

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
$$

$$
=(1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right)
$$

$$
+t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right)
$$

Weighted Average of Control Points

- Regroup for p :

$$
\begin{aligned}
\mathbf{x}(t)= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right) \\
\mathbf{x}(t)= & (1-t)^{3} \mathbf{p}_{0}+3(1-t)^{2} t \mathbf{p}_{1}+3(1-t) t^{2} \mathbf{p}_{2}+t^{3} \mathbf{p}_{3} \\
\mathbf{x}(t)= & \overbrace{\left(-t^{3}+3 t^{2}-3 t+1\right)}^{B_{0}(t)} \mathbf{p}_{0}+\overbrace{\left(3 t^{3}-6 t^{2}+3 t\right)}^{B_{1}(t)} \mathbf{p}_{1} \\
& +\underbrace{\left(-3 t^{3}+3 t^{2}\right)}_{B_{2}(t)} \mathbf{p}_{2}+\underbrace{\left(t^{3}\right)}_{B_{3}(t)} \mathbf{p}_{3}
\end{aligned}
$$

Cubic Bernstein Polynomials

$$
\mathbf{x}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3}
$$

The cubic Bernstein polynomials :

$$
\begin{aligned}
B_{0}(t) & =-t^{3}+3 t^{2}-3 t+1 \\
B_{1}(t) & =3 t^{3}-6 t^{2}+3 t \\
B_{2}(t) & =-3 t^{3}+3 t^{2} \\
B_{3}(t) & =t^{3} \\
\hline \sum B_{i}(t) & =1
\end{aligned}
$$

Bernstein Cubic Polynomials

- Weights $\mathrm{B}_{\mathrm{i}}(t)$ add up to I for any value of t

General Bernstein Polynomials

$$
\begin{array}{lll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 & B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t & B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}^{2}(t)=t^{2} & B_{2}^{3}(t)=-3 t^{3}+3 t^{2} \\
& & B_{3}^{3}(t)=t^{3}
\end{array}
$$

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \quad\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

$$
\sum B_{i}^{n}(t)=1 \quad \mathrm{n}!=\text { factorial of } \mathrm{n}
$$

$$
(n+1)!=n!\times(n+1)
$$

General Bézier Curves

- n th-order Bernstein polynomials form n th-order Bézier curves

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \\
& \mathbf{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{p}_{i}
\end{aligned}
$$

Bézier Curve Properties

Overview:

- Convex Hull property
- Affine Invariance

Definitions

- Convex hull of a set of points:
- Polyhedral volume created such that all lines connecting any two points lie completely inside it (or on its boundary)
- Convex combination of a set of points:
- Weighted average of the points, where all weights between 0 and I, sum up to I
- Any convex combination of a set of points lies within the convex hull

Convex Hull Property

- A Bézier curve is a convex combination of the control points (by definition, see Bernstein polynomials)
- A Bézier curve is always inside the convex hull
- Makes curve predictable
- Allows culling, intersection testing, adaptive tessellation
- Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

Affine Invariance

Transforming Bézier curves

- Two ways to transform:
- Transform the control points, then compute resulting spline points
- Compute spline points, then transform them
- Either way, we get the same points
- Curve is defined via affine combination of points
- Invariant under affine transformations (i.e., translation, scale, rotation, shear)
- Convex hull property remains true

Cubic Polynomial Form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Regroup into coefficients of t :
$\mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t^{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t^{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1$

$$
\begin{array}{rl}
\hline \mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} & \mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
& \mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
& \mathbf{d}=\left(\mathbf{p}_{0}\right) \\
\hline
\end{array}
$$

- Good for fast evaluation
- Precompute constant coefficients (a,b,c,d)
- Not much geometric intuition

Cubic Matrix Form

$$
\begin{aligned}
& \mathbf{x}(t)=\left[\begin{array}{llll}
\overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \begin{array}{l}
\overrightarrow{\mathbf{a}}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\overrightarrow{\mathbf{b}}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
\overrightarrow{\mathbf{c}}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
\mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{array} \\
& \mathbf{x}(t)=\underbrace{\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]}_{\mathbf{G}_{\text {Bez }}} \underbrace{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\mathbf{B}_{B e z}} \underbrace{\left[\begin{array}{c}
3 \\
t^{2} \\
t \\
1
\end{array}\right]}_{\mathbf{T}}
\end{aligned}
$$

- Other types of cubic splines use different basis matrices $\mathbf{B}_{\text {Bez }}$

Cubic Matrix Form

- In 3D: 3 equations for x, y and z :
$\mathbf{x}_{x}(t)=\left[\begin{array}{llll}p_{0 x} & p_{1 x} & p_{2 x} & p_{3 x}\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$
$\mathbf{x}_{y}(t)=\left[\begin{array}{llll}p_{0 y} & p_{1 y} & p_{2 y} & p_{3 y}\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$
$\mathbf{x}_{z}(t)=\left[\begin{array}{llll}p_{0 z} & p_{1 z} & p_{2 z} & p_{3 z}\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$

Matrix Form

- Bundle into a single matrix

$$
\begin{aligned}
& \mathbf{x}(t)=\left[\begin{array}{llll}
p_{0 x} & p_{1 x} & p_{2 x} & p_{3 x} \\
p_{0 y} & p_{1 y} & p_{2 y} & p_{3 y} \\
p_{0 z} & p_{1 z} & p_{2 z} & p_{3 z}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \\
& \begin{array}{l}
\mathbf{x}(t)=\mathbf{G}_{B e z} \mathbf{B}_{B e z} \mathbf{T} \\
\mathbf{x}(t)=\mathbf{C} \mathbf{~}
\end{array}
\end{aligned}
$$

- Efficient evaluation
- Pre-compute C
* Take advantage of existing 4×4 matrix hardware support

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

Drawing Bézier Curves

- Draw line segments or individual pixels
- Approximate the curve as a series of line segments (tessellation)
, Uniform sampling
- Adaptive sampling
- Recursive subdivision

Uniform Sampling

- Approximate curve with N straight segments
- N chosen in advance
- Evaluate

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{x}\left(t_{i}\right) \text { where } t_{i}=\frac{i}{N} \text { for } i=0,1, \ldots, N \\
& \mathbf{x}_{i}=\overrightarrow{\mathbf{a}} \frac{i^{3}}{N^{3}}+\overrightarrow{\mathbf{b}} \frac{i^{2}}{N^{2}}+\overrightarrow{\mathbf{c}} \frac{i}{N}+\mathbf{d}
\end{aligned}
$$

- Connect the points with lines
- Too few points?
- Poor approximation
" "Curve" is faceted
- Too many points?

- Slow to draw too many line segments
- Segments may draw on top of each other

Adaptive Sampling

- Use only as many line segments as you need
- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel

Recursive Subdivision

- Any cubic curve segment can be expressed as a Bézier curve
- Any piece of a cubic curve is itself a cubic curve
- Therefore:
- Any Bézier curve can be broken down into smaller Bézier curves

De Casteljau Subdivision

- De Casteljau construction points are the control points of two Bézier sub-segments

Adaptive Subdivision Algorithm

- Use De Casteljau construction to split Bézier segment in half
- For each half
- If "flat enough": draw line segment
, Else: recurse
- Curve is flat enough if hull is flat enough
- Test how far the approximating control points are from a straight segment
- If less than one pixel, the hull is flat enough

Drawing Bézier Curves With OpenGL

- Indirect OpenGL support for drawing curves:
- Define evaluator map (glMap)
- Draw line strip by evaluating map (glEvalCoord)
- Optimize by pre-computing coordinate grid (glMapGrid and glEvalMesh)
- More details about OpenGL implementation:
- http://www.cs.duke.edu/courses/fall09/cps|24/notes/I2_curves lopengl_nurbs.pdf

Lecture Overview

- Polynomial Curves
- Introduction
- Polynomial functions
- Bézier Curves
- Introduction
- Drawing Bézier curves
- Piecewise Bézier curves

More Control Points

- Cubic Bézier curve limited to 4 control points
- Cubic curve can only have one inflection (point where curve changes direction of bending)
, Need more control points for more complex curves
- $k-1$ order Bézier curve with k control points

- Hard to control and hard to work with
- Intermediate points don't have obvious effect on shape
- Changing any control point changes the whole curve
- Want local support: each control point only influences nearby portion of curve

Piecewise Curves

- Sequence of line segments
- Piecewise linear curve

- Sequence of simple (low-order) curves, end-to-end
- Known as a piecewise polynomial curve
- Sequence of cubic curve segments
- Piecewise cubic curve (here piecewise Bézier)

Parametric Continuity

- C^{0} continuity:
- Curve segments are connected
- C^{1} continuity:
- C^{0} \& Ist-order derivatives agree
- Curves have same tangents
- Relevant for smooth shading
- C^{2} continuity:
- $C^{\prime} \& 2 n d-o r d e r ~ d e r i v a t i v e s ~ a g r e e ~$
- Curves have same tangents and curvature
- Relevant for high quality reflections

Geometric Continuity

- G^{0} :
- Curve segments are connected
- Same as C^{0}
- G^{\prime} :
- G ${ }^{0}$ \& Ist-order derivatives are proportional at joints
- Proportional = same direction but may have different magnitudes
- Weaker than C^{1}
- G^{2} :
- G^{\prime} \& 2nd-order derivative proportional at joints

Global Parameterization

- Given N curve segments $\mathbf{x}_{0}(t), \mathbf{x}_{l}(t), \ldots, \mathbf{x}_{N-l}(t)$
- Each is parameterized for t from 0 to I
- Define a piecewise curve
- Global parameter u from 0 to N

$$
\begin{aligned}
& \mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}(u), & 0 \leq u \leq 1 \\
\mathbf{x}_{1}(u-1), & 1 \leq u \leq 2 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}(u-(N-1)), & N-1 \leq u \leq N
\end{array}\right. \\
& \mathbf{x}(u)=\mathbf{x}_{i}(u-i), \text { where } i=\lfloor u\rfloor
\end{aligned}\left(\text { and } \mathbf{x}(N)=\mathbf{x}_{N-1}(1)\right) \text {) }
$$

Alternate: solution u also goes from 0 to I

$$
\mathbf{x}(u)=\mathbf{x}_{i}(N u-i), \text { where } i=\lfloor N u\rfloor
$$

Piecewise-Linear Curve

- Given N+1 points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$
- Define curve

$$
\begin{aligned}
\mathbf{x}(u) & =\operatorname{Lerp}\left(u-i, \mathbf{p}_{i}, \mathbf{p}_{i+1}\right), & & i \leq u \leq i+1 \\
& =(1-u+i) \mathbf{p}_{i}+(u-i) \mathbf{p}_{i+1}, & & i=\lfloor u\rfloor
\end{aligned}
$$

- $\mathrm{N}+1$ points define N linear segments
- $\mathbf{x}(i)=\mathbf{p}_{i}$
- C^{0} continuous by construction
${ }^{\wedge} \mathrm{C}^{\mathrm{l}}$ at \mathbf{p}_{i} when $\mathbf{p}_{i}-\mathbf{p}_{i-l}=\mathbf{p}_{i+l}-\mathbf{p}_{i}$

Piecewise Bézier curve

- Given $3 N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{aligned}
& \mathbf{x}_{0}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3} \\
& \mathbf{x}_{1}(t)=B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2}(t) \mathbf{p}_{5}+B_{3}(t) \mathbf{p}_{6} \\
& \vdots \\
& \mathbf{x}_{N-1}(t)=B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N-2}+B_{2}(t) \mathbf{p}_{3 N-1}+B_{3}(t) \mathbf{p}_{3 N}
\end{aligned}
$$

Piecewise Bézier Curve

- Parameter in $0<=u<=3 N$

$$
\mathbf{x}(u)=\left\{\begin{array}{lc}
\mathbf{x}_{0}\left(\frac{1}{3} u\right), & 0 \leq u \leq 3 \\
\mathbf{x}_{1}\left(\frac{1}{3} u-1\right), & 3 \leq u \leq 6 \\
\vdots & \vdots \\
\mathbf{x}_{N-1}\left(\frac{1}{3} u-(N-1)\right), & 3 N-3 \leq u \leq 3 N
\end{array}\right.
$$

$$
\mathbf{x}(u)=\mathbf{x}_{i}\left(\frac{1}{3} u-i\right), \text { where } i=\left\lfloor\frac{1}{3} u\right\rfloor
$$

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve

C_{1} discontinuous
C_{1} continuous

Piecewise Bézier Curves

- Used often in 2D drawing programs
- Inconveniences
- Must have 4 or 7 or 10 or 13 or ... (I plus a multiple of 3) control points
- Some points interpolate, others approximate
- Need to impose constraints on control points to obtain C^{1} continuity
- C_{2} continuity more difficult
- Solutions
" User interface using "Bézier handles"
- Generalization to B-splines or NURBS

Bézier Handles

- Segment end points (interpolating) presented as curve control points
- Midpoints (approximating points) presented as "handles"
- Can have option to enforce C_{1} continuity

Adobe Illustrator

Piecewise Bézier Curve

- $3 N+1$ points define N Bézier segments
- $\mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
- C_{0} continuous by construction
- C_{1} continuous at $\mathbf{p}_{3 \mathrm{i}}$ when $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 \mathrm{i}+1}-\mathbf{p}_{3 \mathrm{i}}$
- C_{2} is harder to achieve

C_{1} discontinuous
C_{1} continuous

Rational Curves

- Weight causes point to "pull" more (or less)
- Can model circles with proper points and weights,
- Below: rational quadratic Bézier curve (three control points)

B-Splines

- B as in Basis-Splines
- Basis is blending function
- Difference to Bézier blending function:
- B-spline blending function can be zero outside a particular range (limits scope over which a control point has influence)
- B-Spline is defined by control points and range in which each control point is active.

NURBS

- Non Uniform Rational B-Splines
- Generalization of Bézier curves
- Non uniform:
- Combine B-Splines (limited scope of control points) and Rational Curves (weighted control points)
- Can exactly model conic sections (circles, ellipses)
- OpenGL support: see gluNurbsCurve
- http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2s lindex.html
- http://mathworld.wolfram.com/NURBSCurve.html

