CSE 167:
Introduction to Computer Graphics
Lecture 12: Bézier Curves

Juargen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2013

Announcements
» Homework assighment 5 due tomorrow,
Nov 8 at 1:30pm

» Late submissions for assignment 4 will be accepted
» CSE 169: Computer Animation

Most recent course web site from 2009 is:

PixelActive’s CityScape:

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction

Drawing Bézier curves

Piecewise Bézier curves

Modeling

v

Creating 3D objects

v

How to construct complex surfaces!?
Goal

Specify objects with control points

v

Objects should be visually pleasing (smooth)
» Start with curves, then generalize to surfaces

» Next: What can curves be used for?

Curves

» Surface of revolution

» Animation

» Provide a “track” for objects

» Use as camera path

Video

» Bezier Curves

Curves

» Can be generalized to surface patches

Curve Representation

» Specify many points along a curve, connect with lines?
Difficult to get precise, smooth results across magnification levels
Large storage and CPU requirements
How many points are enough!?

» Specify a curve using a small number of “control points”
Known as a spline curve or just spline

o |(50.120)

10

Spline: Definition
» Wikipedia:

Term comes from flexible spline

devices used by shipbuilders and
draftsmen to draw smooth shapes.

Spline consists of a long strip fixed
in position at a number of points
that relaxes to form a smooth curve
passing through those points.

11

Interpolating Control Points

» “Interpolating” means that curve goes through all control
points

» Seems most intuitive

» Surprisingly, not usually the best choice
Hard to predict behavior
Hard to get aesthetically pleasing curves

12, .

g—l

12

Approximating Control Points

» Curve is “influenced” by control points

7N

» Various types ’

» Most common: polynomial functions
Bézier spline (our focus)
B-spline (generalization of Bézier spline)
NURBS (Non Uniform Rational Basis Spline): used in CAD tools

13

Mathematical Definition

» A vector valued function of one variable x(¢)
Given t, compute a 3D point x=(x,y,z)
Could be interpreted as three functions: x(7), y(¢), z(?)
Parameter t “moves a point along the curve”

v X(t)

3 ’X
x(0.0) x(0.5) x(1.0)

14

Tangent Vector

» Derivative X,(t) — Ccii—)t{ — (ﬂfl(t)a y’(t), Z/(t))

» Vector x’ points in direction of movement

» Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

15

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

16

Polynomial Functions

» Linear: f(t) —at+b

(It order)

» Quadratic: f(t) = at® + bt + ¢
(2" order)

» Cubic: f(t) = at® + bt* + ct
(3 order)

17

Polynomial Curves

» Linear x(t) =at+Db
X = (3373/7 Z)aa — (afazaayaaz)ab — (baza bya bz)

.flf(t) — afﬂjt BN b:l?
» Evaluated as: y(t) = a,t + b,
Z(t) — a/zt N bz
4
b
2

18

Polynomial Curves

Yy
» Quadratic: x(t) = at* +bt +c z
(2" order) ‘ / —>
X

» Cubic: x(t) =at’ +bt* +ct+d

(3 order) Jyz)@

» We usually define the curve for0 <t < |

19

Control Points

» Polynomial coefficients a, b, ¢, d can be interpreted as
control points
Remember:a, b, ¢, d have x,y,z components each

» Unfortunately, they do not intuitively describe the shape of
the curve

» Goal: intuitive control points

20

Control Points

» How many control points?
Two points define a line (1 order)
Three points define a quadratic curve (2" order)
Four points define a cubic curve (37 order)

k+1 points define a k-order curve

» Let’s start with a line...

21

First Order Curve

» Based on linear interpolation (LERP)
Weighted average between two values
“Value” could be a number, vector, color, ...

» Interpolate between points p, and p; with parameter ¢
Defines a “curve” that is straight (first-order spline)
t=0 corresponds to p,
t=1 corresponds to p,

t=0.5 corresponds to midpoint
P1

=1

=0
X(1)= Lerp(t, Py pl): (l_t)po +1 P,

22

Linear Interpolation

» Three equivalent ways to write it
Expose different properties

I. Regroup for points p
x(t) = po(l —t) + pit

2. Regroup for ¢
x(t) = (P1 — Po)t + Po

3. Matrix form

e m 4]

23

Weighted Average

x()=1-t)p,+ (©)p,
= B,(t) p, + B,(t)p,, where B,(t)=1—t and B,(t)=t

» Weights are a function of ¢
Sum is always |, for any value of ¢

Also known as blending functions

l .-"-._
- B o (?) By (,Q’ -
0.6} ,x,r-“'f‘-
0.4 /
-
o~
0.2 T
o
s

24 0.z 0.4 0.6 0.8 1

Linear Polynomial

X()=(P,—Py) I+ Py
Nt B

%/._/
vector point
a b

» Curve is based at point p,,
» Add the vector, scaled by ¢

PP

Po —
T .5(py-py)

25

Matrix Form

<o =[pom]| ||} —cB

» Geometry matrix G = | Po Pi }
o -1 1
» Geometric basis B =
1 0
» Pol ' ' t
olynomial basis T { }
1
» In components Doz Dle 11T
o= R |l
| Poz D1z |

26

Tangent

» For a straight line, the tangent is constant
/
X (t) = p1 — Po

» Weighted average x'(t) = (=1)po + (+1)py

» Polynomial X,(t) = 0t + (p1 — Po)

» Matrix form X,(t) = [PO P1 } { _11 é} { (1)}

27

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

28

Bézier Curves

» Are a higher order extension of linear interpolation

. P1
1N
1N
AY
! \

P

Po

Linear Quadratic Cubic

29

Bézier Curves

» Give intuitive control over curve with control points

Endpoints are interpolated, intermediate points are
approximated

Convex Hull property

» Many demo applets online, for example:
Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

http://www.theparticle.com/applets/nyu/BezierApplet/

http://www.sunsite.ubc.ca/LivingMathematics/VOOINO | /UBCExamples/B
ezier/bezier.html

30

Cubic Bézier Curve

» Most commonly used case

» Defined by four control points:
Two interpolated endpoints (points are on the curve)
Two points control the tangents at the endpoints

» Points x on curve defined as function of parameter ¢

Py X(t)
P>

31

P3

Algorithmic Construction

» Algorithmic construction

De Casteljau algorithm, developed at Citroen in 1959,
named after its inventor Paul de Casteljau (pronounced
“Cast-all-’Joe”)

Developed independently from Bezier’s work:

Beézier created the formulation using blending functions,
Casteljau devised the recursive interpolation algorithm

32

De Casteljau Algorithm

» A recursive series of linear interpolations

Works for any order Bezier function, not only cubic

» Not very efficient to evaluate

Other forms more commonly used

» But:
Gives intuition about the geometry

Useful for subdivision

33

De Casteljau Algorithm

» Given:

Four control points
A value of 1 (here r=0.25)

Py

34

P3

P>

De Casteljau Algorithm

a
q,(1)= Lerp(t,po:P1) py”

q,(t)= Lerp(t,p,,p,)
q,(t)= Lerp(t,p,,p;)

Ps

35

De Casteljau Algorithm

r, (1) = Lerp (t,4,(1),q,(1))
r,(1) = Lerp (t,q, (1), q, (1))

36

De Casteljau Algorithm

—————

x(t) = Lerp(t,x,(t),r,(t))

37

De Casteljau Algorithm

» Applets ;

Demo:

38

Recursive Linear Interpolation

P
4o = Lerp(t,po,pl) "

q, = Lerp(t,pl,pz)
4, = Lerp(t,pz,p3)

r, = Lerp(t,4,.9;)

=L [T,
X el”p(Iy rl)l'l — Lerp(t,qp‘h)

P,
P

39

Expand the LERPs

q,(t) = Lerp(t,py»p,)= (1—1)p, +1p,
q,(t)= Lerp(t,p,.p,)=(1—1)p, +p,
q,(t)= Lerp(t,p,.p;)=(1—1)p, +p,

r,(t)= Lerp(t,q,(1).q,())=(1-1)((1-t)p, +tp,)+t ((1-1)p, +1p,)
r,(t)= Lerp(t,q,(t),q,(®))=(1—t)(1-t)p, +tp,)+t (1 - 1)p, + tp;)

x(t)= Lerp(t,r,(t),1,(1))
=(1-1)((t-)(-1)p, +1p,)+ ((1-1)p, +1p,))
+t((-2)((1=1)p, +1p,)+ 1((1-1)p, +1p,))

40

Weighted Average of Control Points

» Regroup for p:
x(t)=(1-t)((1-1)(1-1)p, +p,)+ 1((1—1)p, +1p,))

+ (1=1)((1=1)p, + 1,)+1((1-1)p, +m,))

x®)=(0-1)p, +30—-1) 1, +3(1-1)*p, +1°p,

Bojst) BIJSI)

x(1) = (—t3 +317 =3t + 1)p0 + (3t3 — 61 + 3t>p1

+(=363 + 3¢)p, + (7)p,

Bzv(t) B; (1)

41

Cubic Bernstein Polynomials

x(t)= B, (1)p, + B,(¢)p, + B, (t)p, + B, (1)p;

Bernstein Cubic Polynomials

The cubic Bernstein polynomials : L i%\
_ 43 2 1\
B, (t)=—t>+3t"-3t+1 o8] \
B (r)=3t"— 61>+ 31 0.6 \H\ By() B B B/
B,(t)=-3"+ 3¢ e
B3 (t) - t 024 ;_r_‘__,f H“‘\.R ~
1 __._j_,.-«"f B :___7,.3*-’&&___
2. Bn)=1 [e s
0 0.2 04 , 0B 0.8

» Weights B.(t) add up to | for any value of t

42

General Bernstein Polynomials

By(t)=—t+1 B (t)=t"-2t+1
B (t)=1 B’ (t)=-2t" +2t
B ()=r
B (¢
(=

43

B ()=—t>+3t" -3t +1
B (t)=3t" -6t + 3t
B} (t)=-3t"+3¢

Bl(1)=r

Bernstein Cubic Polynomials

N,
N, By(1) B(r) B,(1) B.(1)
b

n\ n!

Y o
)(l_t) (t) i) T 1=
2B (1)=1

n! = factorial of n
(n+1)!=n!x (n+1)

General Bézier Curves

» nth-order Bernstein polynomials form nth-order
Bézier curves

B O=")0-0"0
x()=25 O,

44

Bézier Curve Properties

Overview:
» Convex Hull property
» Affine Invariance

45

Definitions

» Convex hull of a set of points:

Polyhedral volume created such that all lines connecting any
two points lie completely inside it (or on its boundary)

» Convex combination of a set of points:

Weighted average of the points, where all weights between 0
and |, sum up to |

» Any convex combination of a set of points lies within the
convex hull

46

Convex Hull Property

» A Bezier curve is a convex combination of the control points
(by definition, see Bernstein polynomials)

» A Bezier curve is always inside the convex hull
Makes curve predictable
Allows culling, intersection testing, adaptive tessellation

» Demo:

47

Affine Invariance

Transforming Bézier curves

» Two ways to transform:

Transform the control points, then compute resulting spline
points

Compute spline points, then transform them
» Either way, we get the same points

Curve is defined via affine combination of points

Invariant under affine transformations (i.e., translation, scale,
rotation, shear)

Convex hull property remains true

48

Cubic Polynomial Form

Start with Bernstein form:

x(t)= (=1 +3> = 3t + 1)p, + (317 = 617 + 3t)p, + (=3¢ + 3¢* Jp, + (* Jp,

Regroup into coefficients of 7 :

x(t)= (-p, +3p, = 3p, +p;)’ +(3p, — 6p, + 3p,)t* +(-3p, + 3p,)t + (p,)1

a=(-p,+3p,—3p,+p;)
b= (3p0 —op, + 3p2)

c= (_3p0 + 3p1)

d= (po)

» Good for fast evaluation

Precompute constant coefficients (a,b,c,d)
» Not much geometric intuition

x(t)=at’ +bt* +ct+d

49

Cubic Matrix Form

"3 a=(-p,+3p, - 3p, +p;)
X(t)z[ﬁ b ¢ d] t < P 30
t ¢c= (—3p0 + 3p1)
- 1 . d= (po)
-1 3 3 1][£
3 -6 3 0}¢
X(1) = [po P P p3] -3 3 0 0| ¢
10 0 0J 1
. y —
GBez BBez T

» Other types of cubic splines use different basis matrices By,

50

Cubic Matrix Form

» In 3D: 3 equations for x,y and z:

Xx(t): [pOx plx

x,()=|p,, D,

x,()=[p,, P

51

p2x

p3x]

P, p3y:|

p2z

p3z:|

Matrix Form

» Bundle into a single matrix

pOx plx p2x p3x 3 _6
XW)=|Poy Py Poy Pyl 5 4
pOZ plz pZZ p3Z 1 O

X(t) = GBezBBeZT
x1)=CT

» Efficient evaluation

Pre-compute C
Take advantage of existing 4x4 matrix hardware support

52

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

53

Drawing Bezier Curves

» Draw line segments or individual pixels
» Approximate the curve as a series of line segments
(tessellation)
Uniform sampling
Adaptive sampling

Recursive subdivision

54

Uniform Sampling

» Approximate curve with N straight segments
N chosen in advance

i :
Evaluate X, = X(ti) Where ti g for 1 = O, 1,..., N

N
X —a

Connect the points with lines

» Too few points!?
Poor approximation

“Curve” is faceted

» Too many points?
Slow to draw too many line segments

Segments may draw on top of each other

55

Adaptive Sampling

» Use only as many line segments as you need
Fewer segments where curve is mostly flat
More segments where curve bends

Segments never smaller than a pixel

X(1)

56

Recursive Subdivision

» Any cubic curve segment can be expressed as a
Bézier curve

» Any piece of a cubic curve is itself a cubic curve
» Therefore:

Any Bézier curve can be broken down into smaller Bézier
curves

57

De Casteljau Subdivision

» De Casteljau construction points
are the control points of two Bézier
sub-segments

58

P3

q,

~
~
~
~
~
~
~
~

~

~
?
’
’
’
’

Adaptive Subdivision Algorithm

» Use De Casteljau construction to split Bézier segment in
half
» For each half
If “flat enough”: draw line segment
Else: recurse
» Curve is flat enough if hull is flat enough

Test how far the approximating control points are from a straight
segment

If less than one pixel, the hull is flat enough

59

Drawing Bezier Curves With OpenGL

» Indirect OpenGL support for drawing curves:
Define evaluator map (g1Map)
Draw line strip by evaluating map (g1EvalCoord)
Optimize by pre-computing coordinate grid (g1MapGrid and
glEvalMesh)

» More details about OpenGL implementation:

60

Lecture Overview

» Polynomial Curves
Introduction
Polynomial functions

» Bézier Curves
Introduction
Drawing Bézier curves

Piecewise Bézier curves

61

More Control Points

» Cubic Bézier curve limited to 4 control points

Cubic curve can only have one inflection (point where curve changes
direction of bending)

Need more control points for more complex curves

» k-1 order Bézier curve with k control points

End control segments
control end-tangents

» Hard to control and hard to work with
Intermediate points don’t have obvious effect on shape
Changing any control point changes the whole curve
Want local support: each control point only influences nearby portion of
curve

62

Piecewise Curves

» Sequence of line segments
Piecewise linear curve

ST TN

» Sequence of simple (low-order) curves, end-to-end
Known as a piecewise polynomial curve

» Sequence of cubic curve segments
Piecewise cubic curve (here piecewise Bézier)

®
4 ’_.\

63

Parametric Continuity

» COcontinuity:
Curve segments are connected
» C! continuity:
CO & Ist-order derivatives agree
Curves have same tangents
Relevant for smooth shading
» C2 continuity:
C! & 2nd-order derivatives agree
Curves have same tangents and curvature
Relevant for high quality reflections

Co contirmilk--\ Co & C; continuity

=) - =

Cp & C; & C,continuity

m) ;

Geometric Continuity
» GO

Curve segments are connected
Same as C°
» G
GO & Ist-order derivatives are proportional at joints

Proportional = same direction but may have different magnitudes
Weaker than C!

» G2

G' & 2nd-order derivative proportional at joints

Global Parameterization

» Given N curve segments X(?), X,(?), ..., Xy_;(?)
» Each is parameterized for ¢ from O to |

» Define a piecewise curve
Global parameter u from 0 to N

(x, (1), 0<uc<l

—-1), ISu<?2

Xy (u—-(N-1)), N-1<u<N

x(u)=x,(u—i), wherei=|u| (andx(N)=x, (1))

» Alternate: solution u also goes from 0O to |
x(u) = x,(Nu—i), where i=| Nu |

66

Piecewise-Linear Curve

» Given N+1 points py, Py, «-«s Py

» Define curve
X(u)= Lerp(u—1,p,,P,.,) iSu<i+l

=(—u+ip,+w—ip;,,, i=|u]

X(2.9)

x(1.5)

Po Ps

» N+1 points define N linear segments

> X(1)=Pp;
» COcontinuous by construction

» Clat p, when p-p,.; = P, P;

67

Piecewise Bézier curve
e Given 3N +1 points p,,P,».--> Py
e Define N Bézier segments:
X,(t) = B,(t)p, + B,(1)p, + B,(1)p, + B;(1)p;
X,(t)=B,(1)p, + B,(1)p, + B,(1)ps + B;(1)P;

XN_1(t) — B()(t)p3N—3 + Bl(t)p3N—2 + Bz(t)p3N—1 + B3(t)p3N

® Ps
T
XH(f) ™
P P, Pig g
1
N o s
R0 \\33) g P2
Pt N X (1L Pio Py
° &
Py 5

68

Piecewise Beézier Curve

» Parameter in O<=u<=3N
X, (3u), O0<u<3

X(u):ﬁ(l(gu—l), 3@36

Xy Gu—(N-1)), 3N-3<u<3N

x(u)=x,(lu—i), wherei=|1u|

x(8.75)
f—7;T\J//

. e / \ X;5(1)

X(?) %(1) / *

e
4 ——_——"
.,
.
’,

x(3.5)
69

u=12

Piecewise Beézier Curve

3N+1 points define N Beézier segments
X(3i)=p3i -”"./ﬁ.‘“\.__ /,/"

C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous
70

Piecewise Bezier Curves

» Used often in 2D drawing programs

» Inconveniences

Must have 4 or 7 or 10 or I3 or ... (I plus a multiple of 3)
control points

Some points interpolate, others approximate

Need to impose constraints on control points to obtain C!
continuity

C, continuity more difficult

» Solutions
User interface using “Bézier handles”
Generalization to B-splines or NURBS

71

Bézier Handles

Flo Edt Object Type Select Fiter Effect View Window Heb

» Segment end points [l- - oo o
(interpolating)
presented as curve
control points

» Midpoints

(approximating / |
points) presented as = p— Y,
“handles” pr— N
» Can have optionto [5-"""
enforce C, continuity [
s v s o

Adobe Illustrator
72

Piecewise Beézier Curve

3N+1 points define N Beézier segments
X(3i)=p3i -”"./ﬁ.‘“\.__ /,/"

C, continuous by construction

C, continuous at p3; when ps; - P = P3iy; - P3;
C, is harder to achieve

Py P,

C, discontinuous C, continuous
73

Rational Curves

» Weight causes point to “pull” more (or less)
» Can model circles with proper points and weights,

» Below: rational quadratic Bézier curve (three control points)

W1=2'0 w1=1.0 wl=0.5
W1=,0'0 W1=,'0' 5

_

74

B-Splines

» B as in Basis-Splines
» Basis is blending function
» Difference to Bézier blending function:

B-spline blending function can be zero outside a particular
range (limits scope over which a control point has influence)

» B-Spline is defined by control points and range in which
each control point is active.

75

NURBS

» Non Uniform Rational B-Splines
» Generalization of Bézier curves
» Non uniform:

» Combine B-Splines (limited scope of control points) and
Rational Curves (weighted control points)

» Can exactly model conic sections (circles, ellipses)
» OpenGL support: see gluNurbsCurve

76

