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Announcements

� Homework assignment 5 due tomorrow, 
Nov 8 at 1:30pm

� Late submissions for assignment 4 will be accepted

� CSE 169: Computer Animation

� Most recent course web site from 2009 is:

� http://graphics.ucsd.edu/courses/cse169_w09

� PixelActive’s CityScape:

� http://www.youtube.com/watch?v=yrqm9qK_Mlo
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Modeling

� Creating 3D objects

� How to construct complex surfaces?

� Goal

� Specify objects with control points

� Objects should be visually pleasing (smooth)

� Start with curves, then generalize to surfaces

� Next:  What can curves be used for?
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Curves

� Surface of revolution
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Curves

� Extruded/swept surfaces
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Curves

� Animation

� Provide a “track” for objects

� Use as camera path
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Video

� Bezier Curves

� http://www.youtube.com/watch?v=hlDYJNEiYvU
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Curves

� Can be generalized to surface patches
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Curve Representation
� Specify many points along a curve, connect with lines?  

� Difficult to get precise, smooth results across magnification levels

� Large storage and CPU requirements

� How many points are enough?

� Specify a curve using a small number of “control points”
� Known as a spline curve or just spline

Control 

point
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Spline: Definition

� Wikipedia:

� Term comes from flexible spline 
devices used by shipbuilders and 
draftsmen to draw smooth shapes.

� Spline consists of a long strip fixed 
in position at a number of points 
that relaxes to form a smooth curve 
passing through those points.
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Interpolating Control Points

� “Interpolating” means that curve goes through all control 
points

� Seems most intuitive

� Surprisingly, not usually the best choice

� Hard to predict behavior

� Hard to get aesthetically pleasing curves
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Approximating Control Points

� Curve is “influenced” by control points

� Various types

� Most common: polynomial functions

� Bézier spline (our focus)

� B-spline (generalization of Bézier spline)

� NURBS (Non Uniform Rational Basis Spline): used in CAD tools
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� A vector valued function of one variable x(t)

� Given t, compute a 3D point x=(x,y,z)

� Could be interpreted as three functions: x(t), y(t), z(t)

� Parameter t “moves a point along the curve”

Mathematical Definition

x

y

z

x(0.0) x(0.5) x(1.0)

x(t)
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Tangent Vector

� Derivative

� Vector x’ points in direction of movement

� Length corresponds to speed

x’(0.0) x’(0.5) x’(1.0)

x(t)

x

y

z
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Polynomial Functions

� Linear:
(1st order)

� Quadratic:
(2nd order)

� Cubic:
(3rd order)
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Polynomial Curves

� Linear

� Evaluated as:
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Polynomial Curves

� Quadratic:
(2nd order)

� Cubic:
(3rd order)

� We usually define the curve for 0 ≤ t ≤ 1
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Control Points

� Polynomial coefficients a, b, c, d can be interpreted as 
control points

� Remember: a, b, c, d have x,y,z components each

� Unfortunately, they do not intuitively describe the shape of 
the curve

� Goal: intuitive control points
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Control Points

� How many control points?

� Two points define a line (1st order)

� Three points define a quadratic curve (2nd order)

� Four points define a cubic curve (3rd order)

� k+1 points define a k-order curve

� Let’s start with a line…
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First Order Curve

� Based on linear interpolation (LERP)

� Weighted average between two values

� “Value” could be a number, vector, color, …

� Interpolate between points p0 and p1 with parameter t

� Defines a “curve” that is straight (first-order spline)

� t=0 corresponds to p0

� t=1 corresponds to p1

� t=0.5 corresponds to midpoint

p0

p1

t=1

.

. 0<t<1
t=0

x(t) = Lerp t, p0 , p1( )= 1− t( )p0 + t  p1
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Linear Interpolation

� Three equivalent ways to write it

� Expose different properties

1. Regroup for points p

2. Regroup for t

3. Matrix form
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Weighted Average

� Weights are a function of t

� Sum is always 1, for any value of t

� Also known as blending functions

x(t) = (1 − t)p0 +    (t)p1

= B0 (t) p0 + B1(t)p1, where B0 (t) = 1 − t  and B1(t) = t

24



� Curve is based at point p0

� Add the vector, scaled by t

.

 

x(t) = (p1 − p0 )

vector
124 34

 t +    p0    

point
123

p0.

Linear Polynomial

p1-p0

.5(p1-p0)

.
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� Geometry matrix

� Geometric basis

� Polynomial basis

� In components

Matrix Form
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Tangent

� For a straight line, the tangent is constant

� Weighted average

� Polynomial

� Matrix form
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Bézier Curves

� Are a higher order extension of linear interpolation

p0

p1

p0

p1

p2

p0

p1

p2

p3

Linear Quadratic Cubic
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Bézier Curves

� Give intuitive control over curve with control points
� Endpoints are interpolated, intermediate points are 

approximated

� Convex Hull property

� Many demo applets online, for example:
� Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html

� http://www.theparticle.com/applets/nyu/BezierApplet/

� http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/B
ezier/bezier.html
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Cubic Bézier Curve
� Most commonly used case

� Defined by four control points:
� Two interpolated endpoints (points are on the curve)

� Two points control the tangents at the endpoints

� Points x on curve defined as function of parameter t

31

p0

p1

p2

p3

x(t)
•



Algorithmic Construction

� Algorithmic construction

� De Casteljau algorithm, developed at Citroen in 1959, 
named after its inventor Paul de Casteljau (pronounced 
“Cast-all-’Joe”)

� Developed independently from Bézier’s work:
Bézier created the formulation using blending functions, 
Casteljau devised the recursive interpolation algorithm

32



De Casteljau Algorithm

� A recursive series of linear interpolations

� Works for any order Bezier function, not only cubic

� Not very efficient to evaluate

� Other forms more commonly used

� But:

� Gives intuition about the geometry

� Useful for subdivision
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De Casteljau Algorithm

p0

p1

p2

p3

� Given:

� Four control points

� A value of t (here t≈0.25)
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De Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

q0 (t) = Lerp t,p0 ,p1( )

q1(t) = Lerp t,p1,p2( )

q2 (t) = Lerp t,p2 ,p3( )
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De Casteljau Algorithm

q0

q2

q1

r1

r0

r0 (t) = Lerp t,q0 (t),q1(t)( )

r1(t) = Lerp t,q1(t),q2 (t)( )
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De Casteljau Algorithm

r1x

r0
•

x(t) = Lerp t,r0 (t),r1(t)( )
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x
•

p0

p1

p2

p3

De Casteljau Algorithm

�Applets
� Demo: http://www2.mat.dtu.dk/people/J.Gravesen/cagd/decast.html

� http://www.caffeineowl.com/graphics/2d/vectorial/bezierintro.html
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x = Lerp t,r0 ,r1( )
r0 = Lerp t,q0 ,q1( )

r1 = Lerp t,q1,q2( )

q0 = Lerp t,p0 ,p1( )

q1 = Lerp t,p1,p2( )

q2 = Lerp t,p2 ,p3( )

p0

p1

p2

p3

        p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation
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Expand the LERPs

q0 (t) = Lerp t,p0 ,p1( )= 1− t( )p0 + tp1

q1(t) = Lerp t,p1,p2( )= 1− t( )p1 + tp2

q2 (t) = Lerp t,p2 ,p3( )= 1− t( )p2 + tp3

r0 (t) = Lerp t,q0 (t),q1(t)( )= 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )

r1(t) = Lerp t,q1(t),q2 (t)( )= 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )

x(t) = Lerp t,r0 (t),r1(t)( )

= 1− t( ) 1− t( ) 1− t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

       +t 1− t( ) 1− t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )
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x(t) = 1 − t( ) 1− t( ) 1 − t( )p0 + tp1( )+ t 1− t( )p1 + tp2( )( )

+t 1− t( ) 1 − t( )p1 + tp2( )+ t 1− t( )p2 + tp3( )( )

x(t) = 1 − t( )
3
p0 + 3 1 − t( )

2
tp1 + 3 1 − t( )t

2
p2 + t

3
p3

x(t) = −t
3

+ 3t
2

− 3t + 1( )

B0 (t )6 7444 8444

p0 + 3t
3

− 6t
2

+ 3t( )

B1 (t )6 744 844

p1

+ −3t
3

+ 3t
2( )

B2 (t )

1 24 34
p2 + t

3( )
B3 (t )

{
p3

Weighted Average of Control Points

� Regroup for p:
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� Weights Bi(t) add up to 1 for any value of t

                    x(t) = B0 t( )p0 + B1 t( )p1 + B2 t( )p2 + B3 t( )p3

The cubic Bernstein polynomials :

                    B0 t( )= −t
3

+ 3t
2

− 3t + 1

                    B1 t( )= 3t
3

− 6t
2

+ 3t

                    B2 t( )= −3t
3

+ 3t
2

                    B3 t( )= t
3                        

                Bi (t) = 1∑

Cubic Bernstein Polynomials
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General Bernstein Polynomials

B0

1
t( )= −t + 1      B0

2
t( )= t

2
− 2t + 1     B0

3
t( )= −t

3
+ 3t

2
− 3t + 1

B1

1
t( )= t B1

2
t( )= −2t

2
+ 2t B1

3
t( )= 3t

3
− 6t

2
+ 3t

B2

2
t( )= t

2
B2

3
t( )= −3t

3
+ 3t

2

B3

3
t( )= t

3

Bi

n
t( )=

n

i







1 − t( )

n− i
t( )

i n

i







=

n!

i! n − i( )!

Bi

n
t( )∑ = 1 n! = factorial of n

(n+1)! = n! x (n+1)
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General Bézier Curves

� nth-order Bernstein polynomials form nth-order 
Bézier curves

Bi

n
t( )=

n

i







1− t( )

n− i
t( )

i

x t( )= Bi

n
t( )pi

i=0

n

∑
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Bézier Curve Properties

Overview:

� Convex Hull property

� Affine Invariance
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Definitions

� Convex hull of a set of points:

� Polyhedral volume created such that all lines connecting any 
two points lie completely inside it (or on its boundary)

� Convex combination of a set of points:

� Weighted average of the points, where all weights between 0 
and 1, sum up to 1

� Any convex combination of a set of points lies within the 
convex hull
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p0

p1

p2

p3

Convex Hull Property

� A Bézier curve is a convex combination of the control points 
(by definition, see Bernstein polynomials)

� A Bézier curve is always inside the convex hull

� Makes curve predictable

� Allows culling, intersection testing, adaptive tessellation

� Demo: http://www.cs.princeton.edu/~min/cs426/jar/bezier.html
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Affine Invariance

Transforming Bézier curves

� Two ways to transform:

� Transform the control points, then compute resulting spline 
points

� Compute spline points, then transform them

� Either way, we get the same points

� Curve is defined via affine combination of points

� Invariant under affine transformations (i.e., translation, scale, 
rotation, shear)

� Convex hull property remains true
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� Good for fast evaluation
� Precompute constant coefficients (a,b,c,d) 

� Not much geometric intuition

Start with Bernstein form:

       x(t) = −t
3

+ 3t
2

− 3t + 1( )p0 + 3t
3

− 6t
2

+ 3t( )p1 + −3t
3

+ 3t
2( )p2 + t

3( )p3

Regroup into coefficients of t :

x(t) = −p0 + 3p1 − 3p2 + p3( )t 3
+ 3p0 − 6p1 + 3p2( )t 2

+ −3p0 + 3p1( )t + p0( )1

x(t) = at
3

+ bt
2

+ ct + d

a = −p0 + 3p1 − 3p2 + p3( )

b = 3p0 − 6p1 + 3p2( )

c = −3p0 + 3p1( )

d = p0( )

Cubic Polynomial Form

49



� Other types of cubic splines use different basis matrices BBez

 

x(t) =
r
a

r
b

r
c d 

t
3

t
2

t

1



















r
a = −p0 + 3p1 − 3p2 + p3( )
r
b = 3p0 − 6p1 + 3p2( )
r
c = −3p0 + 3p1( )

d = p0( )

x(t) = p0 p1 p2 p3[ ]

GBez

1 2444 3444

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















BBez

1 2444 3444

t
3

t
2

t

1



















T
{

Cubic Matrix Form
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Cubic Matrix Form

xx (t) = p0 x p1x p2 x p3x[ ]

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















xy (t) = p0 y p1y p2 y p3y
 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















xz (t) = p0z p1z p2z p3z 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















� In 3D: 3 equations for x, y and z:
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� Bundle into a single matrix

� Efficient evaluation
� Pre-compute C

� Take advantage of existing 4x4 matrix hardware support

x(t) =

p0 x p1x p2 x p3x

p0 y p1y p2 y p3y

p0z p1z p2z p3z

















−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



















t
3

t
2

t

1



















x(t) = GBezBBezT

x(t) = C T

Matrix Form
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Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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Drawing Bézier Curves

� Draw line segments or individual pixels

� Approximate the curve as a series of line segments 
(tessellation)

� Uniform sampling

� Adaptive sampling

� Recursive subdivision
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Uniform Sampling

� Approximate curve with N straight segments

� N chosen in advance

� Evaluate

� Connect the points with lines

� Too few points?

� Poor approximation

� “Curve” is faceted

� Too many points?

� Slow to draw too many line segments

� Segments may draw on top of each other

 

xi = x ti( ) where ti =
i

N
 for i = 0, 1,K, N

xi =
r
a

i
3

N
3

+
r
b

i
2

N
2

+
r
c

i

N
+ d

x4

x0

x1

x2

x3

x(t)
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Adaptive Sampling

� Use only as many line segments as you need

� Fewer segments where curve is mostly flat

� More segments where curve bends

� Segments never smaller than a pixel

x(t)
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Recursive Subdivision

� Any cubic curve segment can be expressed as a 
Bézier curve

� Any piece of a cubic curve is itself a cubic curve

� Therefore:

� Any Bézier curve can be broken down into smaller Bézier
curves
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� De Casteljau construction points
are the control points of two Bézier
sub-segments

De Casteljau Subdivision

xp0

p1

p2

p3

q0
r0

r1

q2
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Adaptive Subdivision Algorithm

� Use De Casteljau construction to split Bézier segment in 
half

� For each half

� If “flat enough”: draw line segment

� Else: recurse

� Curve is flat enough if hull is flat enough

� Test how far the approximating control points are from a straight 
segment

� If less than one pixel, the hull is flat enough
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Drawing Bézier Curves With OpenGL

� Indirect OpenGL support for drawing curves:

� Define evaluator map (glMap)

� Draw line strip by evaluating map (glEvalCoord)

� Optimize by pre-computing coordinate grid (glMapGrid and 
glEvalMesh)

� More details about OpenGL implementation:

� http://www.cs.duke.edu/courses/fall09/cps124/notes/12_curves
/opengl_nurbs.pdf

60



Lecture Overview

� Polynomial Curves

� Introduction

� Polynomial functions

� Bézier Curves

� Introduction

� Drawing Bézier curves

� Piecewise Bézier curves
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More Control Points

� Cubic Bézier curve limited to 4 control points
� Cubic curve can only have one inflection (point where curve changes 

direction of bending)

� Need more control points for more complex curves

� k-1 order Bézier curve with k control points

� Hard to control and hard to work with
� Intermediate points don’t have obvious effect on shape

� Changing any control point changes the whole curve

� Want local support: each control point only influences nearby portion of 
curve
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Piecewise Curves
� Sequence of line segments

� Piecewise linear curve

� Sequence of simple (low-order) curves, end-to-end
� Known as a piecewise polynomial curve

� Sequence of cubic curve segments
� Piecewise cubic curve (here piecewise Bézier)
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Parametric Continuity
� C0 continuity:

� Curve segments are connected 

� C1 continuity:
� C0 & 1st-order derivatives agree
� Curves have same tangents
� Relevant for smooth shading

� C2 continuity:
� C1 & 2nd-order derivatives agree
� Curves have same tangents and curvature
� Relevant for high quality reflections



Geometric Continuity

� G0:
� Curve segments are connected
� Same as C0

� G1:
� G0 & 1st-order derivatives are proportional at joints
� Proportional = same direction but may have different magnitudes
� Weaker than C1

� G2:
� G1 & 2nd-order derivative proportional at joints



Global Parameterization

� Given N curve segments x0(t), x1(t), …, xN-1(t)

� Each is parameterized for t from 0 to 1
� Define a piecewise curve

� Global parameter u from 0 to N

� Alternate: solution u also goes from 0 to 1

 

x(u) =

x0 (u), 0 ≤ u ≤ 1

x1(u − 1), 1 ≤ u ≤ 2

M M

xN −1(u − N − 1( )),    N − 1 ≤ u ≤ N













x(u) = xi (u − i),  where i = u     (and x(N ) = xN −1(1))

x(u) = xi (Nu − i),  where i = Nu 
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� Given N+1 points p0, p1, …, pN

� Define curve

� N+1 points define N linear segments
� x(i)=pi

� C0 continuous by construction 
� C1 at pi when pi-pi-1 = pi+1-pi

Piecewise-Linear Curve

x(u) = Lerp(u − i,pi ,pi+1),           i ≤ u ≤ i + 1

= (1− u + i)pi + (u − i)p i+1,   i = u 

p0

p1

p2

p3

p4

p5

p6

x(1.5)

x(5.25)

x(2.9)
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Piecewise Bézier curve

 

• Given 3N + 1 points p0 ,p1,K,p3N

• Define N Bézier segments:

x0 (t) = B0 (t)p0 + B1(t)p1 + B2 (t)p2 + B3(t)p3

x1(t) = B0 (t)p3 + B1(t)p4 + B2 (t)p5 + B3(t)p6

M

           xN −1(t) = B0 (t)p3N − 3 + B1(t)p3N −2 + B2 (t)p3N −1 + B3(t)p3N

x0(t)

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12
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Piecewise Bézier Curve

 

           x(u) =

x0 ( 1

3
u), 0 ≤ u ≤ 3

x1(
1

3
u − 1), 3 ≤ u ≤ 6

M M

xN −1(
1

3
u − (N − 1)), 3N − 3 ≤ u ≤ 3N













           x(u) = xi

1

3
u − i( ), where i = 1

3
u 

� Parameter in 0<=u<=3N

x0(t)
x1(t)

x2(t) x3(t)

x(3.5)

x(8.75)

u=0
u=12
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� 3N+1 points define N Bézier segments
� x(3i)=p3i

� C0 continuous by construction 
� C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

� C2 is harder to achieve

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
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Piecewise Bézier Curves

� Used often in 2D drawing programs

� Inconveniences
� Must have 4 or 7 or 10 or 13 or … (1 plus a multiple of 3) 

control points

� Some points interpolate, others approximate

� Need to impose constraints on control points to obtain C1 

continuity

� C2 continuity more difficult

� Solutions
� User interface using “Bézier handles”

� Generalization to B-splines or NURBS
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Bézier Handles

� Segment end points 
(interpolating) 
presented as curve 
control points

� Midpoints 
(approximating 
points) presented as 
“handles”

� Can have option to 
enforce C1 continuity

Adobe Illustrator
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� 3N+1 points define N Bézier segments
� x(3i)=p3i

� C0 continuous by construction 
� C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

� C2 is harder to achieve

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p0

P3

p2

p1

p4

p5

p6

C1 discontinuous
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Rational Curves

� Weight causes point to “pull” more (or less)

� Can model circles with proper points and weights,

� Below: rational quadratic Bézier curve (three control points)

pull less
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B-Splines

� B as in Basis-Splines

� Basis is blending function

� Difference to Bézier blending function:

� B-spline blending function can be zero outside a particular 
range (limits scope over which a control point has influence)

� B-Spline is defined by control points and range in which 
each control point is active.
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NURBS

� Non Uniform Rational B-Splines

� Generalization of Bézier curves

� Non uniform: 

� Combine B-Splines (limited scope of control points) and 
Rational Curves (weighted control points)

� Can exactly model conic sections (circles, ellipses)

� OpenGL support:  see gluNurbsCurve

� http://bentonian.com/teaching/AdvGraph0809/demos/Nurbs2d
/index.html

� http://mathworld.wolfram.com/NURBSCurve.html
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