
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #17: Volume Rendering

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2012

Announcements

� Thursday, Dec 13: Final project presentations in EBU-3B
room 1202, 3-6pm

� Midterms

� Verify total score on front sheet is sum of individual scores

� Cross-check total score with Ted

� If exam kept past end of today’s office hour, cannot dispute
grade later

2

Midterm Statistics

Midterm 1 Midterm 2

Submissions 53 49

Average score 70.5 69.9

3

Median score 72.5 69.5

Highest score 95 98

Lowest score 39.5 26

Standard Deviation 14.2 13.3

Lecture Overview

� Volume Rendering

� SSAO

4

Applications: Medicine

CT Angiography:
Dept. of Neuroradiology
University of Erlangen,
Germany

CT Human Head:
Visible Human Project,
US National Library of
Medicine, Maryland,
USA

5 This and some of the following slides are from a Eurographics 2006 course by Dr. Christof
Rezk Salama, Computer Graphics and Multimedia Group, University of Siegen, Germany

Translucent Objects

6

Source: GPU Gems

Methods of Representation

� Polygonal - Triangle Mesh

� Freeforms - parametric curves, patches...

� Solid Modelling - CSG (Constructive Solid Geometry)

� Direct Volume Rendering� Direct Volume Rendering

7

Why Direct Volume Rendering?

Pros Cons

� Natural representation of
CT/MRI images

� Transparency effects (Fire,

� Huge data sets

� Computationally
expensiveTransparency effects (Fire,

Smoke…)

� High quality

expensive

� Cannot be embedded
easily into polygonal scene

8

Volume Rendering Outline

Data Set 3D Rendering Classification

in real-time on

commodity graphics hardware

9

Rendering Methods

There are two categories of volume rendering algorithms:

1. Ray casting algorithms (Object Order)
� Basic ray-casting
� Using octrees

2. Plane Composing (Image Order)
� Basic slicing with 2D textures� Basic slicing with 2D textures
� Shear-Warp factorization
� Translucent textures with image-aligned 3D textures

10

Ray Casting

� Software Solution

Image Plane

Eye

Data Set

Numerical Integration

Resampling

High Computational Load

Eye

11

Rendering Methods

There are two categories of volume rendering algorithms:

1. Ray casting algorithms (Object Order)
� Basic ray-casting
� Using octrees

2. Plane Composing (Image Order)
� Basic slicing with 2D textures� Basic slicing with 2D textures
� Shear-Warp factorization
� Translucent textures with image-aligned 3D textures

12

Ray Casting

� Software Solution

Image Plane

Eye

Data Set

Numerical Integration

Resampling

High Computational Load

Eye

13

Plane Compositing

Proxy geometry (Polygonal Slices)

14

Compositing

� Maximum Intensity Projection
No emission/absorption
Simply compute maximum value along a ray

Emission/Absorption Maximum Intensity Projection

15

2D Textures

Decompostition into axis-aligned slices

Draw the volume as a stack of 2D textures

Bilinear Interpolation in Hardware

3 copies of the data set in memory

16

2D Textures: Drawbacks

Sampling rate is inconsistent

d
d´ ≠ d

Emission/absorption slightly incorrect

Super-sampling on-the-fly impossible

17

3D Textures

R

R G B A

G
B

For each fragment:

interpolate the

texture coordinates

(barycentric)

Texture-Lookup:
interpolate the

texture color

(trilinear)

18

3D Textures

Slices parallel to the image plane

3D Texture: Volumetric Texture Object

Trilinear Interpolation in Hardware

One large texture block in memory

19

Comparison of 2D with 3D Texturing

20

Left: 2D textures, right: 3D textures

[Lewiner2006]

Resampling via 3D Textures

Sampling rate is constant

d d

Supersampling by increasing the

number of slices

21

Transfer Functions

� 1D transfer function: maps RGBA to each data value (see
a and c below).

� 2D transfer function: maps RGBA to each combination of
data value and gradient magnitude (see b and d below).

22

From GPU Gems

Shadows

23

Volume rendering with shadows

(from GPU Gems)

Implementation: Loading a 3D Texture
� // init the 3D texture

� glEnable(GL_TEXTURE_3D_EXT);

� glGenTextures(1, &tex_glid);

� glBindTexture(GL_TEXTURE_3D_EXT, tex_glid);

� // texture environment setup

� glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

� glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

� glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

� glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

� glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

� // load the texture image

� glTexImage3DEXT(GL_TEXTURE_3D_EXT, // target

� 0, // level

� GL_RGBA, // color storage

� (int) tex_ni(), // width

� (int) tex_nj(), // height

� (int) tex_nk(), // depth

� 0, // border

� GL_COLOR_INDEX, // format

� GL_FLOAT, // type

� _texture); // allocated texture buffer

� glPixelTransferi(GL_MAP_COLOR, GL_FALSE);

24

Videos

� Human head, rendered with 3D texture:

� http://www.youtube.com/watch?v=94_Zs_6AmQw

� GigaVoxels:

� http://www.youtube.com/watch?v=HScYuRhgEJw

25

Demo: DeskVox

� Created at IVL/Calit2

� http://ivl.calit2.net/wiki/index.php/VOX_and_Virvo

26

Lecture Overview

� Volume Rendering

� SSAO

27

Screen Space Ambient Occlusion

� Screen Space Ambient Occlusion = SSAO

� Rendering technique for approximating ambient occlusion in
real time

� Developed by Vladimir Kajalin while working at Crytek

� First use in 2007 PC game Crysis

28 SSAO component

SSAO Demo

� Screen Space Ambient Occlusion (SSAO) in Crysis

� http://www.youtube.com/watch?v=ifdAILHTcZk

29

Basic SSAO Algorithm

� Copy frame buffer to texture

� Pixel shader samples depth values around current pixel
and tries to compute amount of occlusion

� Occlusion depends on depth difference between sampled
point and current point

Nvidia’s documentation:� Nvidia’s documentation:

� http://developer.download.nvidia.com/SDK/10.5/direct3d/Sourc
e/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

� SSAO shader code from Crysis:

� http://69.163.227.177/forum.php?mod=viewthread&tid=772

� Another implementation:

� http://www.gamerendering.com/2009/01/14/ssao/
30

SSAO With Normals

� First pass: render depth information in a texture’s alpha
channel and scene normals in the RGB channels

� Use this information to render SSAO in a render target

� It uses the normals and pixel depth to compute the
occlusion between current pixel and several samples
around that pixel, chosen by sampling texels from depth around that pixel, chosen by sampling texels from depth
map around it.

31 With SSAONo SSAO

SSAO Discussion

� Advantages:

� Independent from scene complexity.

� No pre-processing, no memory allocation in RAM

� Works with dynamic scenes

� Works in the same way for every pixel

No CPU usage: executed completely on GPU� No CPU usage: executed completely on GPU

� Disadvantages:

� Local and view-dependent (dependent on adjacent texel
depths)

� Hard to correctly smooth/blur out noise without interfering
with depth discontinuities, such as object edges

32

