
CSE 167:
Introduction to Computer Graphics
Lecture #16: Particles, Collisions

Jürgen P. Schulze, Ph.D.
University of California, San Diego

Fall Quarter 2020

Particle Systems

2

Particle Systems
 Used for:
 Fire/sparks
 Rain/snow
 Water spray
 Explosions
 Galaxies

3

Internal Representation
 Particle system is collection of a number of individual elements (particles)
 Controls a set of particles which act autonomously but share some

common attributes
 Particle Emitter: Source of all new particles

 3D point
 Polygon mesh: particles’ initial velocity vector is normal to surface

 Particle attributes:
 position (3D)
 velocity (vector: speed and direction)
 color + opacity
 lifetime
 size
 shape
 weight

4

Dynamic Updates
 Particles change position and/or attributes with time
 Initial particle attributes often created with random numbers
 Frame update:
 Parameters: simulation of particles, can include collisions with geometry

 Forces (gravity, wind, etc) accelerate a particle
 Acceleration changes velocity
 Velocity changes position

 Rendering:
 GL_POINTS
 GL_POINT_SPRITE
 Point shader

5

Source: http://www.particlesystems.org/

Point Rendering – Vertex Shader
uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{

// Calculate point scale based on distance from the viewer
// to compensate for the fact that gl_PointSize is the point
// size in rasterized points / pixels.
float cameraDist = distance(a_position_size.xyz, u_cameraPos);
float pointScale = 1.0 - (cameraDist / maxDistance);
pointScale = max(pointScale, minPointScale);
pointScale = min(pointScale, maxPointScale);

// Set GL globals and forward the color:
gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
gl_PointSize = a_position_size.w * pointScale;
v_color = a_color;

}

6

Demo
 Particle system in WebGL:
 http://nullprogram.com/webgl-particles/

7

http://nullprogram.com/webgl-particles/

References
 Tutorial with source code by Bartlomiej Filipek, 2014:

 http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-
Renderer

 Articles with source code:
 Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998

 http://www.darwin3d.com/gamedev/articles/col0798.pdf

 John Van Der Burg: “Building an Advanced Particle System”, Gamasutra,
June 2000
 http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php

 Founding scientific paper:
 Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,

ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983
 https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

8

http://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-Renderer
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
https://www.evl.uic.edu/aej/527/papers/Reeves1983.pdf

Collison Detection

9

Collision Detection
 Goals:
 Physically correct simulation

of collision of objects
 Not covered here

 Determine if two objects
intersect

 Slow calculation because of
exponential growth O(n2):
 # collision tests = n*(n-1)/2

10

Intersection Testing
 Purpose:
 Keep moving objects on the ground
 Keep moving objects from going through walls, each other, etc.

 Goal:
 Believable system, does not have to be physically correct

 Priority:
 Computationally inexpensive

 Typical approach:
 Spatial partitioning
 Object simplified for collision detection by one or a few

 Points

 Spheres

 Axis aligned bounding box (AABB)

 Pairwise checks between points/spheres/AABBs and static geometry

11

Sweep and Prune Algorithm
 Sorts bounding boxes
 Not intuitively obvious how to sort bounding boxes in 3-space
 Dimension reduction approach:
 Project each 3-dimensional bounding box onto the x,y and z axes
 Find overlaps in 1D: a pair of bounding boxes can overlap if and only if

their intervals overlap in all three dimensions
 Construct 3 lists, one for each dimension
 Each list contains start/end point of intervals corresponding to that dimension
 By sorting these lists, we can determine which intervals overlap
 Reduce sorting time by keeping sorted lists from previous frame, changing

only the interval endpoints

12

Collision Map (CM)
 2D map with information

about where objects can go
and what happens when they
go there

 Colors indicate different
types of locations

 Map can be computed from
3D model, or hand drawn
with paint program

 Granularity: defines how
much area (in object space)
one CM pixel represents

13

	CSE 167:�Introduction to Computer Graphics�Lecture #16: Particles, Collisions
	Particle Systems
	Particle Systems
	Internal Representation
	Dynamic Updates
	Point Rendering – Vertex Shader
	Demo
	References
	Collison Detection
	Collision Detection
	Intersection Testing
	Sweep and Prune Algorithm
	Collision Map (CM)

