
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #16: Particle Systems

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2012

Announcements

� Wednesday, Nov 28: Last day for late grading of project 6

� Thursday, Nov 29: Midterm exam #2

� Friday, Nov 30: Final project summary due

� Thursday, Dec 13: Final project presentations in EBU-3B
room 1202, 3-6pmroom 1202, 3-6pm

� Looking for TAs and Tutors for CSE190: 3D UI

2

Demo

� Geisel Returns Home

� By Robert Pardridge, Christopher
Jenkins, Kevin Reynolds

� “It is well known that Geisel
Library resembles a huge spaceship.
Almost every UCSD student has Almost every UCSD student has
this thought at least once while
walking past the library. “

3

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

4

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

Galaxies� Galaxies

5

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

6

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

7

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

8

Demo

� Source:
http://www.particlesystems.org/Distrib/Particle221Demos.zip

9

References

� Free particle systems API (not for final project):

� http://particlesystems.org/

� On-line tutorial:

� http://www.naturewizard.com/tutorial08.html

� Initial scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� Article with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998,
http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, June
2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.p
hp

10

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

11

Collision Detection

� Goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersectintersect

� Slow calculation because of
exponential growth O(n2):

� # collision tests = n*(n-1)/2

12

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

13

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensionstheir intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

14

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locationstypes of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

15

References

� I-Collide:

Interactive and exact collision detection library for large � Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

16

Lecture Overview

� Particle Systems

� Collision Detection

� Volume Rendering

17

What is Volume Rendering

� AVolume is a 3D array of voxels (volume elements, 3D
equivalent of pixels)

� 3D images produced by CT, MRI, 3D mesh-based
simulations are easily represented as volumes

� The Voxel is the basic element of the volume
Typical volume size may be 1283 voxels, but any other size Typical volume size may be 1283 voxels, but any other size
is acceptable.

� Volume Rendering means rendering the voxel-based data
into a viewable 2D image.

18

Volume Data Types

� 3D volume data are represented by a finite number of
cross-sectional slices (3D grid)cross-sectional slices (3D grid)

� Each voxel stores a data value

� Single bit: binary data set

� Typical: 8 or 16 bit integers

� Simulations often generate floating point

� Sometimes multi-valued (multiple data values per voxel), for
instance RGB, multi-channel confocal microscopy

19

Applications: Medicine

CT Angiography:
Dept. of Neuroradiology
University of Erlangen,
Germany

CT Human Head:
Visible Human Project,
US National Library of
Medicine, Maryland,
USA

20 This and some of the following slides are from a Eurographics 2006 course by Dr. Christof
Rezk Salama, Computer Graphics and Multimedia Group, University of Siegen, Germany

Applications: Geology

Deformed Plasticine Model,
Applied Geology,
University of Erlangen

Muschelkalk:
Paläontologie,
Virtual Reality Group,
University of Erlangen

21

Applications: Archaeology

Hellenic Statue of Isis

3rd century B.C.
ARTIS, University of Erlangen-
Nuremberg, Germany

Sotades Pygmaios Statue

5th century B.C
ARTIS, University of Erlangen-
Nuremberg, Germany

22

Applications

Material Science,

Quality Control

Biology

Micro CT, Compound Material
Material Science Department, University
of Erlangen

Biological sample of soil, CT
Virtual Reality Group,
University if Erlangen

23

Computational Science and Engineering

Applications

24

