
CSE 167:

Introduction to Computer Graphics

Lecture #16: Procedural Modeling

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2013

Announcements

� Reduced office hours today and tomorrow

� Upcoming deadline: blog, submit by sending URL to me by
Sunday, December 1st

� Two more blogs due before demonstration day

� Next Tuesday:

� Returning midterm exams

� Presentation of midterm solutions

2

Lecture Overview

� Procedural Modeling

� Concepts

� Algorithms

3

3D Modeling

� Creating 3D objects/scenes and defining their
appearance (texture, etc.)

� So far we created

� Triangle meshes

� Bezier patches

� Interactive modeling

� Place vertices, control points manually

� For realistic scenes, need extremely complex models
containing millions or billions of primitives

� Modeling everything manually is extremely tedious

4

Alternatives

� Data-driven modeling
� Scan model geometry
from real world examples

� Use laser scanners or
similar devices

� Use photographs as textures

� Archives of 3D models
� http://www-graphics.stanford.edu/data/3Dscanrep/

� Reader for PLY point file format:
http://w3.impa.br/~diego/software/rply/

� Procedural modeling
� Construct 3D models and/or textures algorithmically

Photograph Rendering
[Levoy et al.]

5

Procedural Modeling

� Wide variety of techniques for
algorithmic model creation

� Used to create models
too complex (or tedious)
to build manually
� Terrain, clouds

� Plants, ecosystems

� Buildings, cities

� Usually defined by a small set of data, or rules, that describes
the overall properties of the model
� Tree defined by branching properties and leaf shapes

� Model is constructed by an algorithm
� Often includes randomness to add variety

� E.g., a single tree pattern can be used to model an entire forest

[Deussen et al.]

6

Randomness

� Use some sort of randomness to make models more
interesting, natural, less uniform

� Pseudorandom number generation algorithms
� Produce a sequence of (apparently) random numbers based
on some initial seed value

� Pseudorandom sequences are repeatable, as one can
always reset the sequence
� E.g., if a tree is built using pseudorandom numbers, then the
entire tree can be rebuilt by resetting the seed value

� If the seed value is changed, a different sequence of numbers
will be generated, resulting in a (slightly) different tree

7

Recursion

� Repeatedly apply the same operation (set of
operations) to an object

� Generate self-similar objects: fractals

� Objects which look similar when viewed at different scales

� For example, the shape of a coastline may appear as a
jagged line on a map

� As we zoom in, we see that there is more and more detail at
finer scales

� We always see a jagged line no matter how close we look at
the coastline

8

Lecture Overview

� Procedural Modeling

� Concepts

� Algorithms

9

Height Fields

� Landscapes are often constructed as height fields

� Regular grid on the ground plane

� Store a height value at each point

� Can store large terrain in memory
� No need to store all grid coordinates: inherent connectivity

� Shape terrain by operations that modify the height at
each grid point

� Can generate height from grey scale values
� Allows using image processing tools to create terrain height

� � Extra credit in Homework Assignment #2

10

Fractals

� Fractal:
Fragmented geometric shape which can be
split into parts, each of which is (at least
approximately) a smaller size copy of the
whole

� Self-similarity

� Demo: Mandelbrot Set
http://www.scale18.com/canvas2.html

11

From Wikipedia

Video

� 3D Mandelbrot Zoom

� http://www.youtube.com/watch?v=0clz6WLfWaY

12

Fractal Landscapes
� Random midpoint displacement algorithm (one-dimensional)

� Similar for triangles, quadrilaterals

Source: http://gameprogrammer.com/fractal.html#midpoint13

Result: Mountain Range

Step 1

Step 2

Step 3

Start with single horizontal line segment.

Repeat for sufficiently large number of times

{

Repeat over each line segment in scene

{

Find midpoint of line segment.

Displace midpoint in Y by random amount.

Reduce range for random numbers.

}

}

Step 0

Fractal Landscapes

[http://www.planetside.co.uk/gallery/f/tg09]

� Add textures, material properties; use nice rendering
algorithm

� Example: Terragen Classic (free software)
http://www.planetside.co.uk/terragen/

14

L-Systems

� Developed by biologist Aristid Lindenmayer in 1968
to study growth patterns of algae

� Defined by grammar

� V = alphabet, set of symbols that can be replaced (variables)
� S = set of symbols that remain fixed (constants)
� ω = string of symbols defining initial state
� P = production rules

� Stochastic L-system

� If there is more than one production rule for a symbol,
randomly choose one

15

Turtle Interpretation for L-Systems
� Origin: functional programming language Logo

� Dialect of Lisp
� Designed for education: drove a mechanical turtle as an output device

� Turtle interpretation of strings

� State of turtle defined by (x, y, α) for position and heading

� Turtle moves by step size d and angle increment δ

� Sample Grammar

� F: move forward a step of length d
New turtle state: (x’, y’, α)
x’ = x + d cos α
y’ = y + d sin α
A line segment between points (x, y) and (x’, y’) is drawn.

� +: Turn left by angle δ. Next state of turtle is (x, y, α+δ)
Positive orientation of angles is counterclockwise.

� −: Turn right by angle δ. Next state of turtle is (x, y, α-δ)

16

Example: Sierpinski Triangle

� Variables: A, B
� Draw forward

� Constants: + , -
� Turn left, right by 60 degrees

� Start: A
� Rules: (A→B-A-B), (B→A+B+A)

2 iterations 4 iterations

6 iterations 9 iterations

17

Example: Fern

� Variables: X, F

� X: no drawing operation

� F: move forward

� Constants: +, −

� Turn left, right

� Start: X

� Rules:
(X → F-[[X]+X]+F[+FX]-X),(F → FF)

[Wikipedia]

18

Fractal Trees

� Recursive generation of trees in 3D
http://web.comhem.se/solgrop/3dtree.htm

� Model trunk and branches as cylinders

� Change color from brown to green at certain level of recursion

Dragon Curve Tree Sierpinski Tree

19

Algorithmic Beauty of Plants

� Book “The Algorithmic Beauty of Plants” by Przemyslaw
Prusinkiewicz and Aristid Lindenmayer, 2004

� On-Line at: http://algorithmicbotany.org/papers/#abop

[Prusinkiewicz, http://algorithmicbotany.org/papers/positional.sig2001.pdf]
20

Buildings, Cities: CityEngine

21

http://www.esri.com/software/cityengine/

CityEngine: Pipeline

22

Parish, Mueller: “Procedural Modeling of Cities”, ACM Siggraph 2001

Shape Grammar

� Shape Rules

� Defines how an existing shape can be transformed

� Generation Engine

� Performs the transformations

� Working Area

� Displays created geometry

23

Example:

Coca-Cola Bottle

24

Evolution of Coca-Cola bottles

Division of a Coca-Cola bottle

Shape Computation Example

� Shape computation for two existing Coca-Cola bottles

25
Source: Chau et al.: “Evaluation of a 3D Shape Grammar

Implementation”, Design Computing and Cognition'04, pp. 357-376

Demonstration: Procedural Buildings

� Demo fr-041: debris by Farbrausch, 2007

� http://www.youtube.com/watch?v=wqu_IpkOYBg&hd=1

� Single, 177 KB EXE file!

� http://www.farbrausch.de/

26

Lecture Overview

� Particle Systems

� Collision Detection

27

Particle Systems

� Used for:

� Fire/sparks

� Rain/snow

� Water spray

� Explosions

� Galaxies

28

Internal Representation
� Particle system is collection of a number of individual elements (particles)

� Controls a set of particles which act autonomously but share some
common attributes

� Particle Emitter: Source of all new particles

� 3D point

� Polygon mesh: particles’ initial velocity vector is normal to surface

� Particle attributes:

� position (3D)

� velocity (vector: speed and direction)

� color + opacity

� lifetime

� size

� shape

� weight

29

Dynamic Updates

� Particles change position and/or attributes with time

� Initial particle attributes often created with random numbers

� Frame update:

� Parameters: simulation of particles, can include collisions with geometry

� Forces (gravity, wind, etc) accelerate a particle

� Acceleration changes velocity

� Velocity changes position

� Rendering: display as

� OpenGL points

� (Textured) billboarded quads

� Point sprites

30

Source: http://www.particlesystems.org/

Point Sprite

� Screen-aligned element of variable size

� Defined by single point

� Sample code:

glTexEnvf(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);

glEnable(GL_POINT_SPRITE);

glBegin(GL_POINTS);

glVertex3f(position.x, position.y, position.z);

glEnd();

glDisable(GL_POINT_SPRITE);

31

Demo

� Source:
http://www.particlesystems.org/Distrib/Particle221Demos.zip

32

References

� Free particle systems API (not for final project):

� http://particlesystems.org/

� On-line tutorial:

� http://www.naturewizard.com/tutorial08.html

� Initial scientific paper:

� Reeves: “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”,
ACM Transactions on Graphics (TOG) Volume 2 Issue 2, April 1983

� Article with source code:

� Jeff Lander: “The Ocean Spray in Your Face”, Game Developer, July 1998,
http://www.darwin3d.com/gamedev/articles/col0798.pdf

� John Van Der Burg: “Building an Advanced Particle System”, Gamasutra, June
2000

� http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.p
hp

33

Lecture Overview

� Particle Systems

� Collision Detection

34

Collision Detection

� Goals:

� Physically correct simulation
of collision of objects

� Not covered here

� Determine if two objects
intersect

� Slow calculation because of
exponential growth O(n2):

� # collision tests = n*(n-1)/2

35

Intersection Testing

� Purpose:

� Keep moving objects on the ground

� Keep moving objects from going through walls, each other, etc.

� Goal:

� Believable system, does not have to be physically correct

� Priority:

� Computationally inexpensive

� Typical approach:

� Spatial partitioning

� Object simplified for collision detection by one or a few

� Points

� Spheres

� Axis aligned bounding box (AABB)

� Pairwise checks between points/spheres/AABBs and static geometry

36

Sweep and Prune Algorithm

� Sorts bounding boxes

� Not intuitively obvious how to sort bounding boxes in 3-space

� Dimension reduction approach:

� Project each 3-dimensional bounding box onto the x,y and z axes

� Find overlaps in 1D: a pair of bounding boxes can overlap if and only if
their intervals overlap in all three dimensions

� Construct 3 lists, one for each dimension

� Each list contains start/end point of intervals corresponding to that dimension

� By sorting these lists, we can determine which intervals overlap

� Reduce sorting time by keeping sorted lists from previous frame, changing
only the interval endpoints

� Alternative: project bounding boxes onto coordinate axis
planes and look for overlaps in 2D

37

Collision Map (CM)

� 2D map with information
about where objects can go
and what happens when they
go there

� Colors indicate different
types of locations

� Map can be computed from
3D model, or hand drawn
with paint program

� Granularity: defines how
much area (in object space)
one CM pixel represents

38

References

� I-Collide:

� Interactive and exact collision detection library for large
environments composed of convex polyhedra

� http://gamma.cs.unc.edu/I-COLLIDE/

� OZ Collide:

� Fast, complete and free collision detection library in C++

� Based on AABB tree

� http://www.tsarevitch.org/ozcollide/

39

