CSE 167

Discussion 7

Jimmy
ft Kevin




Announcements

» Project 4 due Friday 2pm

» Late grading for Project 4 is extended an extra week due
to Thanksgiving

» Start preparing for midterm + final project!

= UCSD



Cubic Bézier Curve

» Defined by four control points:
Two interpolated endpoints (points are on the curve)
Two points control the tangents at the endpoints

Pi

Po x(?)
P>

30

Ps3 < UCSD



Recursive Linear Interpolation

P,
q, = Lerp(t,py.p, )
I =Lerp(t,q0, ql) pl
X =Lerp(t, I,,T, q, = Lerp(taplap2)
r, = Lerp(t,q,,9, ) p,
q, = Lerp(t,p,.p; )
P,
/pl
r /qo\
). / O\Q/pz
™ N
l]\ Ps
qz/
™

’ = UCSD



Equivalently...

By (1) By (1)

x(t) = (—t3 +3°—3t+ ljp . T (3t3 — 61>+ 3tjp 1

+(—3t3 + 3¢ )p2 +(t3 )p3
N 7 -

By(t) B3 (1)

’ = UCSD



Cubic Polynomial Form
Start with Bernstein form:

x(t) = (—t3 + 317 - 3t + l)po + (3t3 — 61% + 3t)p1 + (—3t3+ 37 )p2 + (P )p3

x(t) = (_po +3p, — 3p, + ps)t3 + (3[)0 —6p, + 3p2)t2 + (_3po+ 3p1)t + (po)l

a= (_po +3p, — 3p, +p3)
b =(3p, - 6p, +3p,)
c= (—3p0 + 3p1)

d:(PO)

» Good for fast evaluation

Precompute constant coefficients (a,b,c,d)
» Can also write as a matrix, which is even faster

6 = UCSD

x(¢)=at’ +bt* +ct+d




Global Parameterization

» Given N curve segments Xx,(?), X;(?), ..., Xy ;(?)
» Each is parameterized for ¢ from 0 to |

» Define a piecewise curve
Global parameter u from 0 to N

(x,(u), 0<u<l
x,(u—1), 1 <u<?2
x(u) =5.

|LXN_1(u—(N—1)), N-1<u<N

x(u) =x,(u—1i), where i=||u] (and x(N)=x,_,(1))

» Alternate solution: u defined from 0 to |
x(u) = x,(Nu—1i), wherei=||Nu ||

' = UCSD



Piecewise Bézier curve
e Given 3N +1 points p,,p,,..-,Psy
e Define N Bézier segments:
Xo ()= By(£)py + Bi(t)p, + B,()p, + B;5(¢)p;
X, ()= By(t)p; + B,()p, + B,()ps + B;5(¢)ps

Xy_1(£) = Bo(£)Psy_3 + Bi()Psy_2 + Br(1)Psy_y + B3(2)Psy

p7. p8

RS
X, (1
p6.-', '-~.£9

. e X5(1)
.//m£3 [ — P12
Po : X (2 Pio P

. ¥
P4 Ps

8 = UCSD



Piecewise Beézier Curve

» Parameter in O<=uy<=3N
X, (3u), 0<u<3

x,(Lu—1), 3<u<6

X =1,

X, ,Gu—-(N-1)), 3N-3<u<3N

x(u) =X, (%u — z'), where i = Bu_‘

x(8.75)
20 . X3(1)

u=12
u=

i = UCSD




Parametric Continuity

» COcontinuity:
Curve segments are connected
» C! continuity:
CO & Ist-order derivatives agree
Curves have same tangents
Relevant for smooth shading
» C2 continuity:
C! & 2nd-order derivatives agree
Curves have same tangents and curvature
Relevant for high quality reflections

Co continuil/.\ Cy & C; continuity

= - -)

Coy & Cy & C, continuity



Piecewise Beézier Curve

3N+1 points define N Bézier segments
X(31)=ps; e
C, continuous by construction )
C, continuous at p;; when ps; - P3;.| = P3j+1 - Psi
C, is harder to achieve and rarely necessary

P4 P>

C, discontinuous C, continuous

: = UCSD



Recommended Structure

* Use your scene graph code from Project 3, and implement
some new Geometry subclasses:

* BezierCurve
* Has a GetPoint(t) method
* Should draw N sampled points from the curve (project requires N >= [50)
* Should also draw its own control points

* Track
* Contains 8 children BezierCurves
* Supports keyboard controls for editing control points
* Should draw control handles: lines through related control points, which are
not all owned by any single BezierCurve



More tips

* We can precompute the sampled points inside each
BezierCurve, and only update them when that curve is
updated.

* Draw lines/points by passing GL_LINE_STRIP/GL_POINTS

instead of GL_ TRIANGLES to glDrawElements/glIDrawArrays

 see docs—GL_LINE_STRIP draws a line for each adjacent pair, GL_LINES
draws a lines for the pairs (0,1), (2,3), ...

* A clean way to enforce C| continuity is to implement more
Geometry types

* Example |: AnchorPoint and TangentPoint subclasses of Geometry
* Example 2: ControlHandle subclass of Geometry



Sphere Movement

We want the sphere to move at a constant velocity and stay on the track.

Pick any point on the track (e.g. a control point) as the initial location.
Always keep track of what line segment we’re on.

Calculate the distance to travel in the current frame
(frame_distance = velocity * delta_time)

If traveling this distance keeps the point on the same line segment, we'’re
done.



Sphere Movement

* Otherwise, travel to the end of the current line segment. Subtract the
distance traveled from frame_distance. Then move on to the next line
segment (which we’re now on the initial point of).

* Repeat until frame_distance = 0.

* You also need to handle the case where the sphere moves across
different pieces of the track. It’s conceptually exactly the same (two
adjacent line segments) but requires a bit of extra bookkeeping if you
structure your code using BezierCurve objects.



