
CSE 167

Discussion 7

Jimmy

ft Kevin

Announcements

2

 Project 4 due Friday 2pm

 Late grading for Project 4 is extended an extra week due

to Thanksgiving

 Start preparing for midterm + final project!

Cubic Bézier Curve

30

p0

p2

p3

x(t)

 Defined by four control points:

 Two interpolated endpoints (points are on the curve)

 Two points control the tangents at the endpoints

p1

•

0 1x = Lerp(t, r ,r)
0 0 1r = Lerp(t,q , q)

1 1 2r = Lerp(t,q ,q)

0
q = Lerp t, p ,p

0 1()

1 1 2q = Lerp(t,p ,p)

2 2 3q = Lerp(t,p ,p)

0

1

2

p

p

p

p
3

p1

q0

r0 p2

x q1

r1 p3

q2

p4

Recursive Linear Interpolation

4

5

x(t) = (−t3 + 3t2− 3t +1)p 0

B0 (t)  B1 (t)

+ (3t3 − 6t 2+ 3t)p 1

B2 (t)

 2

B3 (t)


+(−3t3 + 3t2)p +(t 3)p3

Equivalently…

 Good for fast evaluation
 Precompute constant coefficients (a,b,c,d)
 Can also write as a matrix, which is even faster

Start with Bernstein form:

0 1 2
x(t) = (−t3 + 3t2 − 3t +1)p + (3t3 − 6t 2 + 3t)p + (−3t 3 + 3t2)p + (t3)p3

x(t) = (−p0 + 3p1 − 3p2 + p3)t + (3p0 − 6p1 + 3p2)t + (−3p03 2
+ 3p1)t + (p0)1

x(t) = at 3 + bt 2 + ct + d

a = (−p0 + 3p1 − 3p2 + p3)

b = (3p0 − 6p1 + 3p2)

c = (−3p0 + 3p1)

d = (p0)

Cubic Polynomial Form

6

Global Parameterization

7

 Given N curve segments x0(t), x1(t), …, xN-1(t)

 Each is parameterized for t from 0 to 1

 Define a piecewise curve
 Global parameter u from 0 to N

1

0  u 1

1  u 2



N − 1 u  N

x0 (u),



x (u − 1),
x(u) =





xN−1(u − (N −1)),

x(u) = xi (u − i), where i = u (and x(N) = xN −1(1))

 Alternate solution: u defined from 0 to 1

x(u) = xi (Nu− i), where i = Nu

Piecewise Bézier curve

• Given 3N +1 points p0 ,p1,,p3N

• Define N Bézier segments:

x0 (t) = B0(t)p0 + B1(t)p1 + B2(t)p2

x1(t) = B0(t)p3 + B1(t)p4 + B2(t)p5

+ B3(t)p3

+ B3(t)p6



xN −1(t) = B0(t)p3N −3 + B1(t)p3N −2 + B2(t)p3N −1 + B3(t)p3N

x0(t)

8

x1(t)

x2(t)

x3(t)

p0

p1
p2

p3

p4
p5

p6

p7 p8

p9

p10 p11

p12

Piecewise Bézier Curve

0 3

1

1

3
x (u −1),

N−1 3
(1 u − (N −1)),

0  u  3

3  u  6



3N − 3  u  3N

x (1 u),

x(u) = 








x

x(u) = x
i

1

3() 1u − i , where i =  u 3 

 Parameter in 0<=u<=3N

x0(t)
x1(t)

x2(t)
3x (t)

x(3.5)

x(8.75)

u=0
u=12

9

Parametric Continuity
 C0 continuity:

 Curve segments are connected

 C1 continuity:
 C0 & 1st-order derivatives agree

 Curves have same tangents

 Relevant for smooth shading

 C2 continuity:
 C1 & 2nd-order derivatives agree

 Curves have same tangents and curvature

 Relevant for high quality reflections

 3N+1 points define N Bézier segments

 x(3i)=p3i

 C0 continuous by construction

 C1 continuous at p3i when p3i - p3i-1 = p3i+1 - p3i

 C2 is harder to achieve and rarely necessary

Piecewise Bézier Curve

p0

p1

p2

P3

p6

p5

p4

C1 continuous

p

11

0

P3

p2

p1

p4

p5

p6

C1 discontinuous

Recommended Structure

• Use your scene graph code from Project 3, and implement

some new Geometry subclasses:

• BezierCurve
• Has a GetPoint(t) method

• Should draw N sampled points from the curve (project requires N >= 150)

• Should also draw its own control points

• Track
• Contains 8 children BezierCurves

• Supports keyboard controls for editing control points

• Should draw control handles: lines through related control points, which are

not all owned by any single BezierCurve

More tips

• We can precompute the sampled points inside each

BezierCurve, and only update them when that curve is

updated.

• Draw lines/points by passing GL_LINE_STRIP/GL_POINTS

instead of GL_TRIANGLES to glDrawElements/glDrawArrays
• see docs – GL_LINE_STRIP draws a line for each adjacent pair, GL_LINES

draws a lines for the pairs (0,1), (2,3), …

• A clean way to enforce C1 continuity is to implement more

Geometry types
• Example 1: AnchorPoint and TangentPoint subclasses of Geometry

• Example 2: ControlHandle subclass of Geometry

Sphere Movement
• We want the sphere to move at a constant velocity and stay on the track.

• Pick any point on the track (e.g. a control point) as the initial location.

Always keep track of what line segment we’re on.

• Calculate the distance to travel in the current frame

(frame_distance = velocity * delta_time)

• If traveling this distance keeps the point on the same line segment, we’re

done.

Sphere Movement
• Otherwise, travel to the end of the current line segment. Subtract the

distance traveled from frame_distance. Then move on to the next line

segment (which we’re now on the initial point of).

• Repeat until frame_distance = 0.

• You also need to handle the case where the sphere moves across

different pieces of the track. It’s conceptually exactly the same (two

adjacent line segments) but requires a bit of extra bookkeeping if you

structure your code using BezierCurve objects.

