CSE 167

Discussion 7

Jimmy ft Kevin

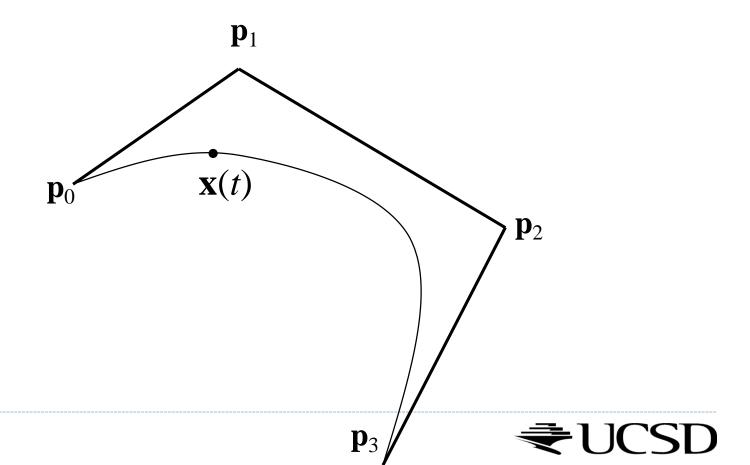
Announcements

- Project 4 due Friday 2pm
- Late grading for Project 4 is extended an extra week due to Thanksgiving
- Start preparing for midterm + final project!

Cubic Bézier Curve

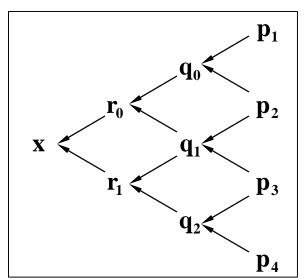
30

- Defined by four control points:
 - Two interpolated endpoints (points are on the curve)
 - Two points control the tangents at the endpoints



Recursive Linear Interpolation

$$\mathbf{x} = Lerp(t, \mathbf{r}_0, \mathbf{r}_1) \mathbf{r}_0 = Lerp(t, \mathbf{q}_0, \mathbf{q}_1) \mathbf{q}_0 = Lerp(t, \mathbf{p}_0, \mathbf{p}_1) \mathbf{p}_0 \mathbf{p}_1 \mathbf{r}_1 = Lerp(t, \mathbf{q}_1, \mathbf{q}_2) \mathbf{q}_1 = Lerp(t, \mathbf{p}_1, \mathbf{p}_2) \mathbf{p}_1 \mathbf{q}_2 = Lerp(t, \mathbf{p}_2, \mathbf{p}_3) \mathbf{p}_2 \mathbf{p}_3$$



Equivalently...

$$\mathbf{x}(t) = \underbrace{\left(-t^3 + 3t^2 - 3t + 1\right)}_{B_0(t)} \mathbf{p}_0 + \underbrace{\left(3t^3 - 6t^2 + 3t\right)}_{B_2(t)} \mathbf{p}_1 + \underbrace{\left(-3t^3 + 3t^2\right)}_{B_2(t)} \mathbf{p}_2 + \underbrace{\left(t^3\right)}_{B_3(t)} \mathbf{p}_3$$

Cubic Polynomial Form

Start with Bernstein form:

$$\mathbf{x}(t) = (-t^3 + 3t^2 - 3t + 1)\mathbf{p}_0 + (3t^3 - 6t^2 + 3t)\mathbf{p}_1 + (-3t^3 + 3t^2)\mathbf{p}_2 + (t^3)\mathbf{p}_3$$

$$\mathbf{x}(t) = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)t_3 + (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)t_2 + (-3\mathbf{p}_0 + 3\mathbf{p}_1)t + (\mathbf{p}_0)\mathbf{1}$$

$$\mathbf{a} = (-\mathbf{p}_0 + 3\mathbf{p}_1 - 3\mathbf{p}_2 + \mathbf{p}_3)$$

$$\mathbf{b} = (3\mathbf{p}_0 - 6\mathbf{p}_1 + 3\mathbf{p}_2)$$

$$\mathbf{c} = (-3\mathbf{p}_0 + 3\mathbf{p}_1)$$

$$\mathbf{d} = (\mathbf{p}_0)$$

- Good for fast evaluation
 - Precompute constant coefficients (a,b,c,d)
 - Can also write as a matrix, which is even faster

Global Parameterization

- ▶ Given N curve segments $\mathbf{x}_0(t)$, $\mathbf{x}_1(t)$, ..., $\mathbf{x}_{N-1}(t)$
- ▶ Each is parameterized for t from 0 to 1
- Define a piecewise curve
 - ▶ Global parameter u from 0 to N

$$\mathbf{x}(u) = \begin{cases} \mathbf{x}_0(u), & 0 \le u \le 1 \\ \mathbf{x}_1(u-1), & 1 \le u \le 2 \\ \vdots & \vdots \\ \mathbf{x}_{N-1}(u-(N-1)), & N-1 \le u \le N \end{cases}$$

$$\mathbf{x}(u) = \mathbf{x}_i (u - i)$$
, where $i = |\lfloor u \rfloor|$ (and $\mathbf{x}(N) = \mathbf{x}_{N-1}(1)$)

▶ Alternate solution: *u* defined from 0 to 1

$$\mathbf{x}(u) = \mathbf{x}_i (Nu - i)$$
, where $i = \lfloor Nu \rfloor$

Piecewise Bézier curve

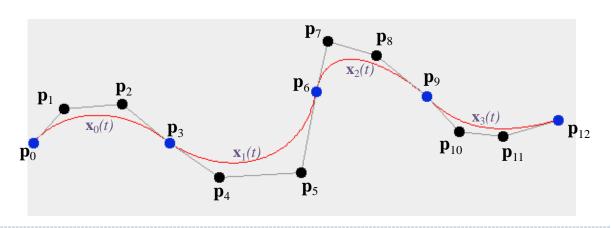
- Given 3N + 1 points $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{3N}$
- Define N Bézier segments:

$$\mathbf{x}_{0}(t) = B_{0}(t)\mathbf{p}_{0} + B_{1}(t)\mathbf{p}_{1} + B_{2}(t)\mathbf{p}_{2} + B_{3}(t)\mathbf{p}_{3}$$

$$\mathbf{x}_{1}(t) = B_{0}(t)\mathbf{p}_{3} + B_{1}(t)\mathbf{p}_{4} + B_{2}(t)\mathbf{p}_{5} + B_{3}(t)\mathbf{p}_{6}$$

$$\vdots$$

$$\mathbf{x}_{N-1}(t) = B_0(t)\mathbf{p}_{3N-3} + B_1(t)\mathbf{p}_{3N-2} + B_2(t)\mathbf{p}_{3N-1} + B_3(t)\mathbf{p}_{3N}$$

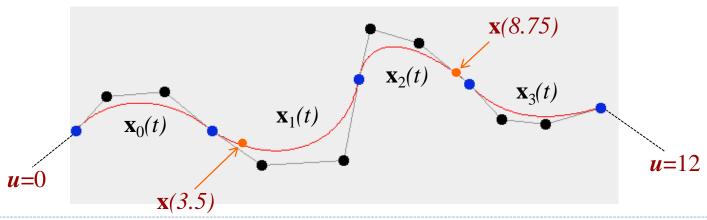


Piecewise Bézier Curve

• Parameter in 0 <= u <= 3N

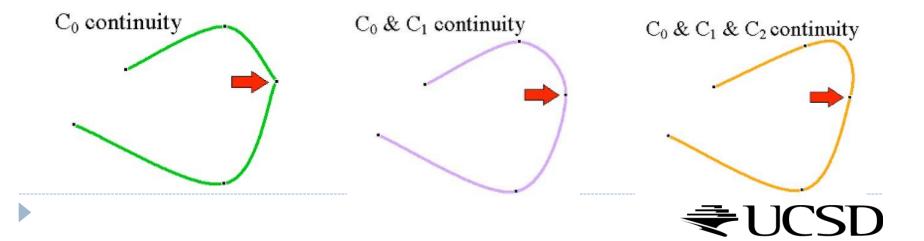
$$\mathbf{x}(u) = \begin{cases} \mathbf{x}_{0}(\frac{1}{3}u), & 0 \le u \le 3 \\ \mathbf{x}_{1}(\frac{1}{3}u - 1), & 3 \le u \le 6 \\ \vdots & \vdots \\ \mathbf{x}_{N-1}(\frac{1}{3}u - (N-1)), & 3N - 3 \le u \le 3N \end{cases}$$

$$\mathbf{x}(u) = \mathbf{x}_i \left(\frac{1}{3}u - i\right)$$
, where $i = \lfloor \frac{1}{3}u \rfloor$



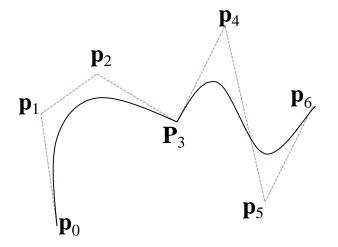
Parametric Continuity

- ► C⁰ continuity:
 - Curve segments are connected
- ► C¹ continuity:
 - ▶ C⁰ & Ist-order derivatives agree
 - Curves have same tangents
 - Relevant for smooth shading
- ▶ C² continuity:
 - ▶ C¹ & 2nd-order derivatives agree
 - Curves have same tangents and curvature
 - Relevant for high quality reflections

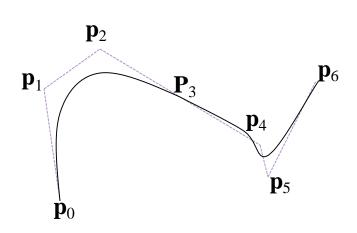


Piecewise Bézier Curve

- ▶ 3N+1 points define N Bézier segments
- $x(3i)=p_{3i}$
- $ightharpoonup C_0$ continuous by construction
- ho C_I continuous at \mathbf{p}_{3i} when \mathbf{p}_{3i} \mathbf{p}_{3i-1} = \mathbf{p}_{3i+1} \mathbf{p}_{3i}
- ▶ C₂ is harder to achieve and rarely necessary



C₁ discontinuous



C₁ continuous

Recommended Structure

 Use your scene graph code from Project 3, and implement some new Geometry subclasses:

BezierCurve

- Has a GetPoint(t) method
- Should draw N sampled points from the curve (project requires N >= 150)
- Should also draw its own control points

Track

- Contains 8 children BezierCurves
- Supports keyboard controls for editing control points
- Should draw control handles: lines through related control points, which are not all owned by any single BezierCurve

More tips

- We can precompute the sampled points inside each BezierCurve, and only update them when that curve is updated.
- Draw lines/points by passing GL_LINE_STRIP/GL_POINTS instead of GL_TRIANGLES to glDrawElements/glDrawArrays
 - see docs GL_LINE_STRIP draws a line for each adjacent pair, GL_LINES draws a lines for the pairs (0,1), (2,3), ...
- A clean way to enforce CI continuity is to implement more Geometry types
 - Example I: AnchorPoint and TangentPoint subclasses of Geometry
 - Example 2: ControlHandle subclass of Geometry

Sphere Movement

- We want the sphere to move at a constant velocity and stay on the track.
- Pick any point on the track (e.g. a control point) as the initial location.
 Always keep track of what line segment we're on.
- Calculate the distance to travel in the current frame (frame_distance = velocity * delta_time)
- If traveling this distance keeps the point on the same line segment, we're done.

Sphere Movement

- Otherwise, travel to the end of the current line segment. Subtract the
 distance traveled from frame_distance. Then move on to the next line
 segment (which we're now on the initial point of).
- Repeat until frame_distance = 0.
- You also need to handle the case where the sphere moves across
 different pieces of the track. It's conceptually exactly the same (two
 adjacent line segments) but requires a bit of extra bookkeeping if you
 structure your code using BezierCurve objects.

