CSE 167

Discussion 7

Jimmy
ft Kevin

Announcement

S Project 4 due Friday 2pm
\square Late grading for Project 4 is extended an extra week due to Thanksgiving
\square Start preparing for midterm + final project!

Cubic Bézier

CDeffired by four control points:
$\square \quad$ Two interpolated endpoints (points are on the curve)
$\square \quad$ Two points control the tangents at the endpoints

Recursive Linear

Interpolation

$$
\mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{p}_{0},{ }_{1}\right.
$$

Equivalently...

$$
\begin{aligned}
& \mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+{ }^{0}+\left(3 t^{3}-6 t^{2}+3 t^{1}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text {) }
\end{aligned}
$$

Cubic Polynomial Form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right)_{\mathbf{p}}^{0}
$$

$$
{ }^{1}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}+{ }^{3}
$$

$$
\underset{\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}}{=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t \stackrel{+\left(t^{3}\right)}{+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right.}
$$

$$
\begin{array}{ll}
& { }^{2} \mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c t}+ & \mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
\mathbf{d} & \mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right)
\end{array}
$$

\square Good for fast evaluattion Precompute constant coefficients (a,b,c,d)
6 Can also write as a matrix, which is even

Global

Pbiveneteciraetigments $\mathbf{x}_{0}(t), \mathbf{x}_{1}(t), \ldots$,
$\mathbf{x}_{N-1}(t)$
\square Each is parameterized for t from 0 to
1
\square Define a piecewise curve ${ }^{0} \leq u \leq$

$$
\begin{aligned}
& \quad \mid\left\langle\mathbf{x}_{N-1}(u-(N-1)), \quad\right. \\
& \mathbf{x}(u)=\mathbf{x}_{i}(u-i) \text {, where } i=\|u\| \leq u \leq \\
& \text { (and } \left.\mathbf{x}(N)=\mathbf{x}_{N-1}(1)\right)
\end{aligned}
$$

\square Alternate solution: u defined from
0 to 1

$$
\mathbf{x}(u)=\mathbf{x}_{i}(N u-i),
$$

Piecewise Bézier

- Gively $\mathrm{G}^{3} N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1,}, \square, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{array}{ll}
\mathbf{x}_{0}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2} & +B_{3}(t) \\
(t) \mathbf{p}_{2} & \mathbf{p}_{3} \\
\mathbf{x}_{1}(t) \notin B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2} & +B_{3}(t) \\
\mathbf{x}_{N}(t)\left(\mathbf{p}_{3}=B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N}+B_{2} \mathbf{p}_{t}\left(\mathbf{p}_{3 N-1}+B_{3}(t)\right.\right. \\
-2
\end{array}
$$

Piecewise Bézier

Cparameter in

$$
\mathbf{x}(u)={ }_{i}\left(\frac{1}{3} u-i, \text { where } i=\left\lfloor\frac{1}{3} u\right\rfloor\right.
$$

Parametric Continuity

- Co continuity:

Curve segments are connected
$\square \mathrm{C}^{1}$ continuity:
$\square \quad C^{0} \&$ 1st-order derivatives
agree
$\square \quad$ Curves have same tangents
\square Relevant for smooth shading
$\square \mathrm{C}^{2}$ continuity:
$\mathrm{C}^{1} \& 2$ nd-order derivatives agree

- Curves have same tangents
and curvature
$\square \mathrm{C}_{0}$ continuity \quad gh qui $\mathrm{C}_{0} \& \mathrm{C}_{1}$ continuity
r

$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Piecewise Bézier

Gulfmints define n Bézier segment
$\square \mathbf{x}(3 \mathrm{i})=\mathbf{p}_{3 \mathrm{i}}$
$\square \mathrm{C}_{0}$ continuous by construction
$\square \mathrm{C}_{1}$ continuous at $\mathbf{p}_{3 i}$ when $\mathbf{p}_{3 i}-\mathbf{p}_{3 i \mathrm{i} 1}=\mathbf{p}_{3 i+1}-$
$\mathbf{p}_{3 i}$
$\square \mathrm{C}_{2}$ is harder to achieve and rarely necessary ${ }_{p_{2}}$

C_{1}
continu9CSD

Recommended Structure

- Use your scene graph code from Project 3, and implement some new Geometry subclasses:
- BezierCurve
- Has a GetPoint(t) method
- Should draw N sampled points from the curve (project requires $\mathrm{N}>=150$)
- Should also draw its own control points
- Track
- Contains 8 children BezierCurves
- Supports keyboard controls for editing control points
- Should draw control handles: lines through related control points, which are not all owned by any single BezierCurve

More tips

- We can precompute the sampled points inside each BezierCurve, and only update them when that curve is updated.
- Draw lines/points by passing GL_LINE_STRIP/GL_POINTS instead of GL_TRIANGLES to gIDrawElements/gIDrawArrays
- see docs - GL_LINE_STRIP draws a line for each adjacent pair, GL_LINES draws a lines for the pairs $(0,1),(2,3), \ldots$
- A clean way to enforce C1 continuity is to implement more Geometry types
- Example 1: AnchorPoint and TangentPoint subclasses of Geometry
- Example 2: ControlHandle subclass of Geometry

Sphere Movement

- We want the sphere to move at a constant velocity and stay on the track.
- Pick any point on the track (e.g. a control point) as the initial location. Always keep track of what line segment we're on.
- Calculate the distance to travel in the current frame (frame_distance $=$ velocity * delta_time)
- If traveling this distance keeps the point on the same line segment, we're done.

Sphere Movement

- Otherwise, travel to the end of the current line segment. Subtract the distance traveled from frame_distance. Then move on to the next line segment (which we're now on the initial point of).
- Repeat until frame_distance $=0$.
- You also need to handle the case where the sphere moves across different pieces of the track. It's conceptually exactly the same (two adjacent line segments) but requires a bit of extra bookkeeping if you structure your code using BezierCurve objects.

