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Announcements

� Homework project #2 due this Friday, October 12

� To be presented starting 1:30pm in lab 260

� Also present late submissions for project #1
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Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates
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Culling

� Goal: 
Discard geometry that does not need to be drawn to 
speed up rendering

� Types of culling:
� View frustum culling� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling
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View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume
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Images: SGI OpenGL Optimizer Programmer's Guide



Videos

� Rendering Optimisations - Frustum Culling 

� http://www.youtube.com/watch?v=kvVHp9wMAO8&feature=r
elated

� View Frustum Culling Demo 

� http://www.youtube.com/watch?v=bJrYTBGpwic

6



Bounding Box

� Rectangular box, parallel to object space coordinate 
planes

� Box is smallest box containing the entire object
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Image: SGI OpenGL Optimizer Programmer's Guide



Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Complex algorithm
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Video

� Umbra 3 Occlusion Culling explained 

� http://www.youtube.com/watch?v=5h4QgDBwQhc
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Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a 
threshold number of pixels
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Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from 
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing
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Backface Culling

� Convention: 
Triangle is front facing if vertices are ordered 
counterclockwise

p0

p2

p0

p1

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p0

p2
Front facing Back facing
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Backface Culling

� Compute triangle normal after projection (homogeneous 
division)

� Third component of n negative: front-facing, otherwise 
back-facing

� Remember: projection matrix is such that homogeneous 
division flips sign of third component
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Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0
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Source: Computer Methods in Applied Mechanics 

and Engineering, Volume 194, Issues 48–49



Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Primitives

Shading

Projection

Scan conversion,

visibility

Image

Culling, Clipping

• Discard geometry that 

will not be visible
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Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates
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View Frustum Clipping

� Partial culling for objects intersecting 
the faces of the view volume

� Need to distinguish geometry on-screen 
from off-screen

� Discard off-screen geometry

� Traditional clipping� Traditional clipping

� Split triangles that lie partly inside/outside 
viewing volume

� Modern GPU implementations avoid 
clipping

� Hardware clips to the canonical view 
volume
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Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates
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Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Primitives

• Scan conversion and 

rasterization are synonymsShading

Projection

Rasteriztion,

Visibility

Image

rasterization are synonyms

• One of the main operations 

performed by GPU

• Draw triangles, lines, points 

(squares)

• Focus on triangles in this 

lecture
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Rasterization
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Rasterization

� How many pixels can a modern graphics processor draw 
per second?
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Rasterization

� How many pixels can a modern graphics processor draw 
per second?

� NVidia GeForce GTX 690

� 234 billion pixels per second

� Multiple of what the fastest CPU could do
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Rasterization

� Many different algorithms

� Old style

� Rasterize edges first
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Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

� Fill the spans (scan lines, scan conversion)
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Rasterization

� Many different algorithms exist

� Old style

� Rasterize edges first

� Fill the spans (scan lines, scan conversion)

� Requires clipping

� Straightforward, but not used for hardware implementation 
today
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Rasterization

� GPU rasteriazation today based on “Homogeneous 
Rasterization”
http://www.ece.unm.edu/course/ece595/docs/olano.pdf

Olano, Marc and Trey Greer, "Triangle Scan Conversion Using 2D Homogeneous Coordinates", Proceedings 
of the 1997 SIGGRAPH/EurographicsWorkshop on Graphics Hardware (Los Angeles, CA, August 2-4, 
1997), ACM SIGGRAPH, New York, 1995.

� Does not require full clipping, does not perform homogeneous 
division at verticesdivision at vertices

� Today in class

� Simpler algorithm

� Easy to implement

� Requires clipping
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Rasterization

� Given vertices in pixel coordinates

World space

Camera spaceCamera space

Clip space

Image space

Pixel coordinates
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Rasterization

� Simple algorithm
compute bbox 

clip bbox to screen limits

for all pixels [x,y] in bbox

compute barycentric coordinates alpha, beta, gamma

if 0<alpha,beta,gamma<1 //pixel in triangle

image[x,y]=triangleColorimage[x,y]=triangleColor

� Bounding box clipping trivial
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Rasterization

� So far, we compute barycentric coordinates of many 
useless pixels

� How can this be improved?
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Rasterization

Hierarchy

• If block of pixels is outside triangle, no need to test 

individual pixels

• Can have several levels, usually two-level

• Find right granularity and size of blocks for optimal • Find right granularity and size of blocks for optimal 

performance
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2D Triangle-Rectangle Intersection

� If one of the following tests returns true, the triangle 
intersects the rectangle:

� Test if any of the triangle’s vertices are inside the rectangle 
(e.g., by comparing the x/y coordinates to the min/max x/y 
coordinates of the rectangle)

� Test if one of the quad’s vertices is inside the triangle (e.g., � Test if one of the quad’s vertices is inside the triangle (e.g., 
using barycentric coordinates)

� Intersect all edges of the triangle with all edges of the rectangle
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Rasterization

Where is the center of a pixel?

� Depends on conventions

� With our viewport transformation:

� 800 x 600 pixels ⇔ viewport coordinates are in [0…800]x[0…600]

� Center of lower left pixel is 0.5, 0.5

� Center of upper right pixel is 799.5, 599.5� Center of upper right pixel is 799.5, 599.5

0.0, 0.0

4.0, 3.0

.

2.5, 0.5
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Rasterization

Shared Edges

� Each pixel needs to be rasterized exactly once

� Resulting image is independent of drawing order

� Rule: If pixel center exactly touches an edge or vertex

� Fill pixel only if triangle extends to the right or downFill pixel only if triangle extends to the right or down
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Lecture Overview

� Culling, Clipping

� Rasterization

� Visibility

� Barycentric Coordinates
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Visibility

• At each pixel, we need to 

determine which triangle

is visible
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Painter’s Algorithm

� Paint from back to front

� Every new pixel always paints over previous pixel in frame 
buffer

� Need to sort geometry according to depth

� May need to split triangles if they intersect

� Outdated algorithm, created when memory was 
expensive
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Z-Buffering

� Store z-value for each pixel

� Depth test

� During rasterization, compare stored value to new value

� Update pixel only if new value is smaller
setpixel(int x, int y, color c, float z)

if(z<zbuffer(x,y)) then

zbuffer(x,y) = z

color(x,y) = c

� z-buffer is dedicated memory reserved for GPU 
(graphics memory)

� Depth test is performed by GPU
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Z-Buffering

� Problem: translucent geometry

� Storage of multiple depth and color values per pixel (not 
practical in real-time graphics)

� Or back to front rendering of translucent geometry, after 
rendering opaque geometry
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Lecture Overview

� Culling, Clipping

� Rasterization

� Visibility

� Barycentric Coordinates
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Rasterization

� What if a triangle’s vertex colors are different?

� Need to interpolate across triangle

� How to calculate interpolation weights?
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Source: efg’s computer lab



Implicit 2D Lines

� Given two 2D points a, b

� Define function            such that
if p lies on the line defined by a, b
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Implicit 2D Lines

� Point p lies on the line, if p-a is perpendicular to the 
normal of the line

� Use dot product to determine on which side of the 
line p lies. If f(p)>0, p is on same side as normal, if 
f(p)<0 p is on opposite side. If dot product is 0, p lies 
on the line.
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Barycentric Coordinates

� Coordinates for 2D plane defined by
triangle vertices a, b, c

� Any point p in the plane defined by a, b, c is
p = a + β (b - a) + γ (c - a)
= (1 – β – γ ) a + β b + γ c

� We define α = 1 – β – γ� We define α = 1 – β – γ
=>  p = α a + β b + γ c

� α, β, γ are called barycentric coordinates

� Works in 2D and in 3D

� If we imagine masses equal to α, β, γ attached to the vertices of 
the triangle, the center of mass (the barycenter) is then p. This is 
the origin of the term “barycentric” (introduced 1827 by Möbius)
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Barycentric Coordinates

� p is inside the triangle if 0 < α, β, γ  < 1
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Barycentric Coordinates

� Problem: Given point p, find its barycentric coordinates

� Use equation for implicit lines

� Division by zero if triangle is degenerate
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Barycentric Interpolation

� Interpolate values across triangles, e.g., colors

� Linear interpolation on triangles
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Barycentric Coordinates

� Demo Applets:

� http://www.ccs.neu.edu/home/suhail/BaryTriangles/applet.htm
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