
CSE 167:

Introduction to Computer GraphicsIntroduction to Computer Graphics

Lecture #5: Rasterization

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2012

Announcements

� Homework project #2 due this Friday, October 12

� To be presented starting 1:30pm in lab 260

� Also present late submissions for project #1

2

Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates

3

Culling

� Goal:
Discard geometry that does not need to be drawn to
speed up rendering

� Types of culling:
� View frustum culling� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling

4

View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume

5

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

� Rendering Optimisations - Frustum Culling

� http://www.youtube.com/watch?v=kvVHp9wMAO8&feature=r
elated

� View Frustum Culling Demo

� http://www.youtube.com/watch?v=bJrYTBGpwic

6

Bounding Box

� Rectangular box, parallel to object space coordinate
planes

� Box is smallest box containing the entire object

7

Image: SGI OpenGL Optimizer Programmer's Guide

Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Complex algorithm

8

Images: SGI OpenGL Optimizer Programmer's Guide

Video

� Umbra 3 Occlusion Culling explained

� http://www.youtube.com/watch?v=5h4QgDBwQhc

9

Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a
threshold number of pixels

10

Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing

11

Backface Culling

� Convention:
Triangle is front facing if vertices are ordered
counterclockwise

p0

p2

p0

p1

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p0

p2
Front facing Back facing

12

Backface Culling

� Compute triangle normal after projection (homogeneous
division)

� Third component of n negative: front-facing, otherwise
back-facing

� Remember: projection matrix is such that homogeneous
division flips sign of third component

13

Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0

14

Source: Computer Methods in Applied Mechanics

and Engineering, Volume 194, Issues 48–49

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Primitives

Shading

Projection

Scan conversion,

visibility

Image

Culling, Clipping

• Discard geometry that

will not be visible

15

Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates

16

View Frustum Clipping

� Partial culling for objects intersecting
the faces of the view volume

� Need to distinguish geometry on-screen
from off-screen

� Discard off-screen geometry

� Traditional clipping� Traditional clipping

� Split triangles that lie partly inside/outside
viewing volume

� Modern GPU implementations avoid
clipping

� Hardware clips to the canonical view
volume

17

Lecture Overview

� Culling

� Clipping

� Rasterization

� Visibility

� Barycentric Coordinates� Barycentric Coordinates

18

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Primitives

• Scan conversion and

rasterization are synonymsShading

Projection

Rasteriztion,

Visibility

Image

rasterization are synonyms

• One of the main operations

performed by GPU

• Draw triangles, lines, points

(squares)

• Focus on triangles in this

lecture
19

Rasterization

20

Rasterization

� How many pixels can a modern graphics processor draw
per second?

21

Rasterization

� How many pixels can a modern graphics processor draw
per second?

� NVidia GeForce GTX 690

� 234 billion pixels per second

� Multiple of what the fastest CPU could do

22

Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

23

Rasterization

� Many different algorithms

� Old style

� Rasterize edges first

� Fill the spans (scan lines, scan conversion)

24

Rasterization

� Many different algorithms exist

� Old style

� Rasterize edges first

� Fill the spans (scan lines, scan conversion)

� Requires clipping

� Straightforward, but not used for hardware implementation
today

25

Rasterization

� GPU rasteriazation today based on “Homogeneous
Rasterization”
http://www.ece.unm.edu/course/ece595/docs/olano.pdf

Olano, Marc and Trey Greer, "Triangle Scan Conversion Using 2D Homogeneous Coordinates", Proceedings
of the 1997 SIGGRAPH/EurographicsWorkshop on Graphics Hardware (Los Angeles, CA, August 2-4,
1997), ACM SIGGRAPH, New York, 1995.

� Does not require full clipping, does not perform homogeneous
division at verticesdivision at vertices

� Today in class

� Simpler algorithm

� Easy to implement

� Requires clipping

26

Rasterization

� Given vertices in pixel coordinates

World space

Camera spaceCamera space

Clip space

Image space

Pixel coordinates

27

Rasterization

� Simple algorithm
compute bbox

clip bbox to screen limits

for all pixels [x,y] in bbox

compute barycentric coordinates alpha, beta, gamma

if 0<alpha,beta,gamma<1 //pixel in triangle

image[x,y]=triangleColorimage[x,y]=triangleColor

� Bounding box clipping trivial

28

Rasterization

� So far, we compute barycentric coordinates of many
useless pixels

� How can this be improved?

29

Rasterization

Hierarchy

• If block of pixels is outside triangle, no need to test

individual pixels

• Can have several levels, usually two-level

• Find right granularity and size of blocks for optimal • Find right granularity and size of blocks for optimal

performance

30

2D Triangle-Rectangle Intersection

� If one of the following tests returns true, the triangle
intersects the rectangle:

� Test if any of the triangle’s vertices are inside the rectangle
(e.g., by comparing the x/y coordinates to the min/max x/y
coordinates of the rectangle)

� Test if one of the quad’s vertices is inside the triangle (e.g., � Test if one of the quad’s vertices is inside the triangle (e.g.,
using barycentric coordinates)

� Intersect all edges of the triangle with all edges of the rectangle

31

Rasterization

Where is the center of a pixel?

� Depends on conventions

� With our viewport transformation:

� 800 x 600 pixels ⇔ viewport coordinates are in [0…800]x[0…600]

� Center of lower left pixel is 0.5, 0.5

� Center of upper right pixel is 799.5, 599.5� Center of upper right pixel is 799.5, 599.5

0.0, 0.0

4.0, 3.0

.

2.5, 0.5

32

Rasterization

Shared Edges

� Each pixel needs to be rasterized exactly once

� Resulting image is independent of drawing order

� Rule: If pixel center exactly touches an edge or vertex

� Fill pixel only if triangle extends to the right or downFill pixel only if triangle extends to the right or down

33

Lecture Overview

� Culling, Clipping

� Rasterization

� Visibility

� Barycentric Coordinates

34

Visibility

• At each pixel, we need to

determine which triangle

is visible

35

Painter’s Algorithm

� Paint from back to front

� Every new pixel always paints over previous pixel in frame
buffer

� Need to sort geometry according to depth

� May need to split triangles if they intersect

� Outdated algorithm, created when memory was
expensive

36

Z-Buffering

� Store z-value for each pixel

� Depth test

� During rasterization, compare stored value to new value

� Update pixel only if new value is smaller
setpixel(int x, int y, color c, float z)

if(z<zbuffer(x,y)) then

zbuffer(x,y) = z

color(x,y) = c

� z-buffer is dedicated memory reserved for GPU
(graphics memory)

� Depth test is performed by GPU

37

Z-Buffering

� Problem: translucent geometry

� Storage of multiple depth and color values per pixel (not
practical in real-time graphics)

� Or back to front rendering of translucent geometry, after
rendering opaque geometry

38

Lecture Overview

� Culling, Clipping

� Rasterization

� Visibility

� Barycentric Coordinates

39

Rasterization

� What if a triangle’s vertex colors are different?

� Need to interpolate across triangle

� How to calculate interpolation weights?

40

Source: efg’s computer lab

Implicit 2D Lines

� Given two 2D points a, b

� Define function such that
if p lies on the line defined by a, b

41

Implicit 2D Lines

� Point p lies on the line, if p-a is perpendicular to the
normal of the line

� Use dot product to determine on which side of the
line p lies. If f(p)>0, p is on same side as normal, if
f(p)<0 p is on opposite side. If dot product is 0, p lies
on the line.

42

Barycentric Coordinates

� Coordinates for 2D plane defined by
triangle vertices a, b, c

� Any point p in the plane defined by a, b, c is
p = a + β (b - a) + γ (c - a)
= (1 – β – γ) a + β b + γ c

� We define α = 1 – β – γ� We define α = 1 – β – γ
=> p = α a + β b + γ c

� α, β, γ are called barycentric coordinates

� Works in 2D and in 3D

� If we imagine masses equal to α, β, γ attached to the vertices of
the triangle, the center of mass (the barycenter) is then p. This is
the origin of the term “barycentric” (introduced 1827 by Möbius)

43

Barycentric Coordinates

� p is inside the triangle if 0 < α, β, γ < 1

44

Barycentric Coordinates

� Problem: Given point p, find its barycentric coordinates

� Use equation for implicit lines

� Division by zero if triangle is degenerate

45

Barycentric Interpolation

� Interpolate values across triangles, e.g., colors

� Linear interpolation on triangles

46

Barycentric Coordinates

� Demo Applets:

� http://www.ccs.neu.edu/home/suhail/BaryTriangles/applet.htm

47

