CSE 167:
 Introduction to Computer Graphics Lecture \#5: Rasterization

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2012

Announcements

- Homework project \#2 due this Friday, October 12
- To be presented starting I:30pm in lab 260
- Also present late submissions for project \#I

Lecture Overview

- Culling
- Clipping
- Rasterization
- Visibility
- Barycentric Coordinates

Culling

- Goal:

Discard geometry that does not need to be drawn to speed up rendering

- Types of culling:
- View frustum culling
- Occlusion culling
- Small object culling
- Backface culling
- Degenerate culling

View Frustum Culling

- Triangles outside of view frustum are off-screen
- Done on canonical view volume

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

- Rendering Optimisations - Frustum Culling
- http://www.youtube.com/watch?v=kvVHp9wMAO8\&feature=r elated
- View Frustum Culling Demo
b http://www.youtube.com/watch?v=bJrYTBGpwic

Bounding Box

- Rectangular box, parallel to object space coordinate planes
- Box is smallest box containing the entire object

Image: SGI OpenGL Optimizer Programmer's Guide

Occlusion Culling

- Geometry hidden behind occluder cannot be seen
- Complex algorithm

Images: SGI OpenGL Optimizer Programmer's Guide

Video

- Umbra 3 Occlusion Culling explained
- http://www.youtube.com/watch?v=5h4QgDBwQhc

Small Object Culling

- Object projects to less than a specified size
- Cull objects whose screen-space bounding box is less than a threshold number of pixels

Backface Culling

- Consider triangles as "one-sided", i.e., only visible from the "front"
- Closed objects
" If the "back" of the triangle is facing the camera, it is not visible
- Gain efficiency by not drawing it (culling)
- Roughly 50% of triangles in a scene are back facing

Backface Culling

- Convention: Triangle is front facing if vertices are ordered counterclockwise

- OpenGL allows one- or two-sided triangles
- One-sided triangles: g|Enable(GL_CULLL_FACE); glCullFace(GL_BACK)
- Two-sided triangles (no backface culling): gIDisable(GL_CULL_FACE)

Backface Culling

- Compute triangle normal after projection (homogeneous division)

$$
\mathbf{n}=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \times\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right)
$$

- Third component of \mathbf{n} negative: front-facing, otherwise back-facing
- Remember: projection matrix is such that homogeneous division flips sign of third component

Degenerate Culling

- Degenerate triangle has no area
, Vertices lie in a straight line
- Vertices at the exact same place
- Normal $\mathbf{n}=0$

Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 48-49

Rendering Pipeline

Primitives

Scan conversion,
Culling, Clipping

- Discard geometry that will not be visible

Lecture Overview

- Culling
- Clipping
- Rasterization
- Visibility
- Barycentric Coordinates

View Frustum Clipping

- Partial culling for objects intersecting the faces of the view volume
- Need to distinguish geometry on-screen from off-screen
- Discard off-screen geometry
- Traditional clipping
- Split triangles that lie partly inside/outside viewing volume
- Modern GPU implementations avoid clipping

- Hardware clips to the canonical view volume

Lecture Overview

- Culling
- Clipping
- Rasterization
- Visibility
- Barycentric Coordinates

Rendering Pipeline

Primitives

- Scan conversion and rasterization are synonyms
- One of the main operations performed by GPU
- Draw triangles, lines, points (squares)
- Focus on triangles in this lecture

Rasterization

Rasterization

- How many pixels can a modern graphics processor draw per second?

Rasterization

- How many pixels can a modern graphics processor draw per second?
- NVidia GeForce GTX 690
- 234 billion pixels per second
- Multiple of what the fastest CPU could do

Rasterization

- Many different algorithms
- Old style
- Rasterize edges first

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+											

Rasterization

- Many different algorithms
- Old style
- Rasterize edges first
- Fill the spans (scan lines, scan conversion)

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+				+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	\dagger				\therefore	+	+	+	+	+
+	+	+	+	+	+	+	+							;	+	+	+	+
+	+	+	+	+	+	+	+						+	+	+	+	+	+
+	+	+	+	+	+	+					:	+	+	+	+	+	+	+
+	+	+	+	+	+			:	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Rasterization

- Many different algorithms exist
- Old style
- Rasterize edges first
- Fill the spans (scan lines, scan conversion)
- Requires clipping
- Straightforward, but not used for hardware implementation today

Rasterization

- GPU rasteriazation today based on "Homogeneous Rasterization"

http://www.ece.unm.edu/course/ece595/docs/olano.pdf

Olano, Marc and Trey Greer, "Triangle Scan Conversion Using 2D Homogeneous Coordinates", Proceedings of the 1997 SIGGRAPH/Eurographics Workshop on Graphics Hardware (Los Angeles, CA,August 2-4, 1997),ACM SIGGRAPH, New York, 1995.

- Does not require full clipping, does not perform homogeneous division at vertices
- Today in class
- Simpler algorithm
- Easy to implement
- Requires clipping

Rasterization

- Given vertices in pixel coordinates

$$
\begin{gathered}
\mathbf{p}^{\prime}=|\mathbf{D P}|_{\substack{-1 \\
\mathbf{M} \\
\text { World space }}} \\
\mathbf{p}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right] \quad \text { Pixel coordinates space }
\end{gathered} \begin{array}{ll}
\text { Image space } & x^{\prime} / w^{\prime} \\
y^{\prime} / w^{\prime}
\end{array}
$$

Rasterization

- Simple algorithm

```
    compute b.box
    clip bbox to screen limits
    for all pixels [x,y] in b.box
        compute barycentric coordinates alpha, beta, gamma
        if 0<alpha,beta,gamma<1 //pixel in triangle
        image[x,y]=triangleColor
```

- Bounding box clipping trivial

Rasterization

- So far, we compute barycentric coordinates of many useless pixels
- How can this be improved?

Rasterization

Hierarchy

- If block of pixels is outside triangle, no need to test individual pixels
- Can have several levels, usually two-level
- Find right granularity and size of blocks for optimal performance

2D Triangle-Rectangle Intersection

- If one of the following tests returns true, the triangle intersects the rectangle:
- Test if any of the triangle's vertices are inside the rectangle (e.g., by comparing the x / y coordinates to the min/max x / y coordinates of the rectangle)
* Test if one of the quad's vertices is inside the triangle (e.g., using barycentric coordinates)
- Intersect all edges of the triangle with all edges of the rectangle

Rasterization

Where is the center of a pixel?

- Depends on conventions
- With our viewport transformation:
, 800×600 pixels \Leftrightarrow viewport coordinates are in [0...800] $\times[0 \ldots 600$]
- Center of lower left pixel is $0.5,0.5$
- Center of upper right pixel is $799.5,599.5$

Rasterization

Shared Edges

- Each pixel needs to be rasterized exactly once
- Resulting image is independent of drawing order
- Rule: If pixel center exactly touches an edge or vertex
- Fill pixel only if triangle extends to the right or down

Lecture Overview

- Culling, Clipping
- Rasterization
- Visibility
- Barycentric Coordinates

Visibility

- At each pixel, we need to determine which triangle is visible

Painter's Algorithm

- Paint from back to front
- Every new pixel always paints over previous pixel in frame buffer
- Need to sort geometry according to depth
- May need to split triangles if they intersect

- Outdated algorithm, created when memory was expensive

Z-Buffering

- Store z-value for each pixel
- Depth test
- During rasterization, compare stored value to new value
- Update pixel only if new value is smaller

```
setpixel(int x, int y, color c, float z)
if(z<zbuffer(x,y)) then
    zbuffer (x,y) = z
    color (x,y)=C
```

- z-buffer is dedicated memory reserved for GPU (graphics memory)
- Depth test is performed by GPU

Z-Buffering

- Problem: translucent geometry
- Storage of multiple depth and color values per pixel (not practical in real-time graphics)
- Or back to front rendering of translucent geometry, after rendering opaque geometry

Lecture Overview

- Culling, Clipping
- Rasterization
- Visibility
- Barycentric Coordinates

Rasterization

Source: efg's computer lab

- What if a triangle's vertex colors are different?
- Need to interpolate across triangle
- How to calculate interpolation weights?

Implicit 2D Lines

- Given two 2D points \mathbf{a}, \mathbf{b}
- Define function $f_{\mathbf{a b}}(\mathbf{p})$ such that $f_{\mathbf{a b}}(\mathbf{p})=0$ if \mathbf{p} lies on the line defined by \mathbf{a}, \mathbf{b}

Implicit 2D Lines

- Point \mathbf{p} lies on the line, if \mathbf{p}-a is perpendicular to the normal of the line

$$
\left.\left(a_{y}-b_{y}, b_{x}-a_{x}\right) \quad \text { (} p_{x}-a_{x}, p_{y}-a_{y}\right)
$$

- Use dot product to determine on which side of the line \mathbf{p} lies. If $f(p)>0, p$ is on same side as normal, if $f(\mathbf{p})<0 \mathbf{p}$ is on opposite side. If dot product is $0, \mathbf{p}$ lies on the line.

$$
f_{\mathbf{a b}}(\mathbf{p})=\left(a_{y}-b_{y}, b_{x}-a_{x}\right) \cdot\left(p_{x}-a_{x}, p_{y}-a_{y}\right)
$$

Barycentric Coordinates

- Coordinates for 2D plane defined by triangle vertices $\boldsymbol{a}, \boldsymbol{b}, \mathbf{c}$
- Any point \boldsymbol{p} in the plane defined by $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is $\mathrm{p}=\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\gamma(\mathrm{c}-\mathrm{a})$
$=(\mathrm{I}-\beta-\gamma) \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
- We define $\alpha=\mathrm{I}-\beta-\gamma$

$\Rightarrow \boldsymbol{p}=\alpha \mathrm{a}+\beta \mathrm{b}+\gamma \mathrm{c}$
- α, β, γ are called barycentric coordinates
- Works in 2D and in 3D
- If we imagine masses equal to α, β, γ attached to the vertices of the triangle, the center of mass (the barycenter) is then p. This is the origin of the term "barycentric" (introduced 1827 by Möbius)

Barycentric Coordinates

- \boldsymbol{p} is inside the triangle if $0<\alpha, \beta, \gamma<1$

Barycentric Coordinates

- Problem: Given point \boldsymbol{p}, find its barycentric coordinates
- Use equation for implicit lines

$$
\begin{aligned}
\beta(\mathbf{p}) & =\frac{f_{\mathbf{a c}}(\mathbf{p})}{f_{\mathbf{a c}}(\mathbf{b})} \\
\gamma(\mathbf{p}) & =\frac{f_{\mathbf{a b}}(\mathbf{p})}{f_{\mathbf{a b}}(\mathbf{c})}
\end{aligned}
$$

- Division by zero if triangle is degenerate

$$
\begin{gathered}
\alpha=1-\beta-\gamma \\
0<\beta<1
\end{gathered}
$$

Barycentric Interpolation

- Interpolate values across triangles, e.g., colors
- Linear interpolation on triangles

$$
c(\mathbf{p})=\alpha(\mathbf{p}) c_{\mathbf{a}}+\beta(\mathbf{p}) c_{\mathbf{b}}+\gamma(\mathbf{p}) c_{\mathbf{c}}
$$

Barycentric Coordinates

- Demo Applets:
b http://www.ccs.neu.edu/home/suhail/BaryTriangles/applet.htm

