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Announcements

� Project 2 due Friday at 1pm

� Grading starts at 12 noon

� Project 3 discussion Monday at 4pm
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Perspective Projection

From law of ratios in similar triangles follows:

� We can express this using homogeneous coordinates and 
4x4 matrices as follows
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Similarly:

By definition:



Perspective Projection

Homogeneous divisionProjection matrix
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Perspective Projection

� Using projection matrix, homogeneous division seems more complicated 
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� Handle different types of projections in a unified way

� Define arbitrary view volumes

Projection matrix P
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Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

6



View Volumes

� View volume = 3D volume seen by camera

World coordinates

Camera coordinates

Perspective view volume

World coordinates

Camera coordinates

Orthographic view volume
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Projection 

matrix

Projection Matrix

Camera coordinates

Canonical view volume
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Image space

(pixel coordinates)

Viewport 

transformation



Orthographic View Volume

� Specified by 6 parameters:

� Right, left, top, bottom, near, far

� Or, if symmetrical:

� Width, height, near, far
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Orthographic Projection Matrix

Portho(right,left,top,bottom,near, far) =
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In OpenGL:
glOrtho(left, right, bottom, top, near, far)

No equivalent in OpenGL



Perspective View Volume

General view volume

� Defined by 6 parameters, in camera coordinates 
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom

Camera

coordinates
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Perspective View Volume

Symmetrical view volume

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes
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Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates
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In OpenGL:
glFrustum(left, right, bottom, top, near, far)



Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect 
ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =
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In OpenGL:

gluPerspective(fov, aspect, near, far)



Canonical View Volume

� Goal: create projection matrix so that

� User defined view volume is transformed into canonical 
view volume: cube [-1,1]x[-1,1]x[-1,1]

� Multiplying corner vertices of view volume by projection 
matrix and performing homogeneous divide yields corners 
of canonical view volume 

� Perspective and orthographic projection are treated 
the same way

� Canonical view volume is last stage in which 
coordinates are in 3D

� Next step is projection to 2D frame buffer
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Viewport Transformation

� After applying projection matrix, scene points are in normalized 
viewing coordinates

� Per definition within range [-1..1] x [-1..1] x [-1..1] 

� Next is projection from 3D to 2D (not reversible)

� Normalized viewing coordinates can be mapped to image 
(=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:
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x1 − x0( ) 2 0 0 x0 + x1( ) 2

0 y1 − y0( ) 2 0 y0 + y1( ) 2

0 0 1 2 1 2

0 0 0 1



















16



Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling
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Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space
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Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

20

Object space

World space

Camera space



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space

Camera space

Canonical view volume



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Object space

World space

Camera space

Image space

Canonical view volume



Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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Pixel coordinates:



The Complete Vertex Transformation
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Camera 
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Projection 
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Viewport 
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World 
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Camera 
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Canonical 
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Window 
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Complete Vertex Transformation in OpenGL

� Mapping a 3D point in object coordinates to pixel 
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix
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OpenGL GL_MODELVIEW matrix

OpenGL GL_PROJECTION matrix



Complete Vertex Transformation in OpenGL

� GL_MODELVIEW, C-1M
� Defined by the programmer.

� Think of the ModelView matrix as where you stand with the 
camera and the direction you point it.

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume: 

glFrustum(), gluPerspective(), glOrtho()

� Think of the projection matrix as describing the attributes 
of your camera, such as field of view, focal length, etc.

� Viewport, D

� Specify implicitly via glViewport() 

� No direct access with equivalent to GL_MODELVIEW or 
GL_PROJECTION
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Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling
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Rendering Pipeline

Scene data

Image

� Hardware and software which 
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by 
specialized hardware (GPU)

� Access to hardware through 
low-level 3D API (OpenGL, 
DirectX)

� All scene data flows through 
the pipeline at least once for 
each frame

Rendering

pipeline
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Textures, lights, etc.

� Geometry

� Vertices and how they are 
connected

� Triangles, lines, points, triangle 
strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering 
pipeline one-by-one
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Transform object to camera 
coordinates

� Specified by 
GL_MODELVIEW matrix 
in OpenGL

� User computes 
GL_MODELVIEW matrix 
as discussed

MODELVIEW

matrix
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Look up light sources

� Compute color for each 
vertex
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Project 3D vertices to 2D 
image positions

� GL_PROJECTION matrix
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Draw primitives (triangles, 
lines, etc.)

� Determine what is visible
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Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image � Pixel colors
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Rendering Engine

Scene data

Image

Rendering Engine:

� Additional software layer 
encapsulating low-level API

� Higher level functionality than 
OpenGL

� Platform independent

� Layered software architecture 
common in industry

� Game engines

� Graphics middleware

Rendering

pipeline
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Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling
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Culling

� Goal: 
Discard geometry that does not need to be drawn to 
speed up rendering

� Types of culling:
� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling
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View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume
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Images: SGI OpenGL Optimizer Programmer's Guide



Videos

� Rendering Optimizations - Frustum Culling 

� http://www.youtube.com/watch?v=kvVHp9wMAO8

� View Frustum Culling Demo 

� http://www.youtube.com/watch?v=bJrYTBGpwic
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Bounding Box

� How to cull objects consisting of may polygons?

� Cull bounding box

� Rectangular box, parallel to object space coordinate planes

� Box is smallest box containing the entire object
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Image: SGI OpenGL Optimizer Programmer's Guide



Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Many complex algorithms exist to identify occluded geometry
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Images: SGI OpenGL Optimizer Programmer's Guide



Video

� Umbra 3 Occlusion Culling explained 

� http://www.youtube.com/watch?v=5h4QgDBwQhc
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Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a 
threshold number of pixels
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Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from 
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing
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Backface Culling

� Convention: 
Triangle is front facing if vertices are ordered 
counterclockwise

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p2

p0

p1

p2
Front-facing Back-facing
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Backface Culling

� Compute triangle normal after projection (homogeneous 
division)

� Third component of n negative: front-facing, otherwise 
back-facing

� Remember: projection matrix is such that homogeneous 
division flips sign of third component
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Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0
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Source: Computer Methods in Applied Mechanics 

and Engineering, Volume 194, Issues 48–49



Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Scan conversion,

visibility

Primitives

Image

Culling, Clipping

• Discard geometry that 

will not be visible
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