CSE 167:
Introduction to Computer Graphics
Lecture #4: Projection

Juargen P. Schulze, Ph.D.
University of California, San Diego
Spring Quarter 2015

Announcements

» Project 2 due Friday at |pm

Grading starts at 12 noon

» Project 3 discussion Monday at 4pm

i = UCSD

Perspective Projection

From law of ratios in similar triangles follows:

’ d
(X2,y2,-22)
YN 4yl -
d Zl Zl V‘ [X‘l.y-.-Zw' =
(x"y',-d) a4 s
o _xd %
Similarly: X =—— ! :
Zl et T Fy ceeceeemecenens =
RS SR ———— R o
Image plane

By definition: 7'= d

» We can express this using homogeneous coordinates and
4x4 matrices as follows

’ = UCSD

Perspective Projection

e x,d
<

y=2d

o O =
o = O

0
0
1

00 1/d 0

o O O

— N e K

Projection matrix

Homogeneous division

= UCSD

Perspective Projection

10 0 0
01 0 0
00 1 0
00 1/d 0

Projection matrix P

— N e K

X

Y
z

z/d

xd/z |

» Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

» |t will allow us to:

Handle different types of projections in a unified way

Define arbitrary view volumes

Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

= UCSD

View Volumes

» View volume = 3D volume seen by camera

Orthographic view volume Perspective view volume

Camera coordinates Camera coordinates

/0 y
wC

X S

World coordinates World coordinates

' = UCSD

Projection Matrix

(right top,naar)

left botiom, near) (rght top far)
{lef: bottom near) /
3

Camera coordinates S T W E—
Projection Perspective View Volume Orthographic View Volume
matrix /
Y
Canonical view volume
Viewport ¥ - «/’/
transformation l N,
Image space ke
00 (1,0

(pixel coordinates)
8

Orthographic View Volume

At RN ST

T e e

op W — e e

Up -7 o Sirete
y . -

<«—far(z)
” x ”
& Eye bottom (y) <~ T4— near (z)
Camera e ;
il left (x) right (x)
Camera

(Infinitely far away)
» Specified by 6 parameters:
Right, left, top, bottom, near, far

» Or, if symmetrical:
Width, height, near, far

Orthographic Projection Matrix

Up e tOp(V)_’f:"'
z‘ Efye X bottom(\’fl-’—f?: “— near (2)
Camera 4 f
left (x) right (x)
Cam:era
(Infinitely far away)
2
right — left
0
P . (right,left,top,bottom,near, far) = top —
In OpenGL: 0
glOrtho(left, right, bottom, top, near, far))
2
width
0 2
P .. (width, height,near, far) = height
. . 0 0
No equivalent in OpenGL
0 0

10

0 _ right + left]
right — left
2 0 _top+ bottom
bottom top — bottom
0 2 far + near
far — near far — near
0 0 1 |
0 0
0 0
2 far + near
far —near far — near
0 1

= UCSD

Perspective View Volume

General view volume

y=top

Camera
coordinates

VES X yehottom / z=-near 2=-far
x=right

» Defined by 6 parameters, in camera coordinates
Left, right, top, bottom boundaries
Near, far clipping planes

» Clipping planes to avoid numerical problems
Divide by zero
Low precision for distant objects

» Usually symmetric, i.e., left=-right, top=-bottom

11

Camera

Perspective View Volume

Symmetrical view volume

y=top
T FOV ‘

v

/ z
z=-m
z=-far
» Only 4 parameters
Vertical field of view (FOV) aspect ratio= right —left _ right
Image aspect ratio (width/height) top — bottom top
Near, far clipping planes tan(FOV /2) = 2P

near

” = UCSD

Perspective Projection Matrix

» General view frustum with 6 parameters

Camera

coordinates y

VCS \

x=left J
%'Z n:}) z=-far
x=right

y= tup

2

Poersp(left, right, top, bottom, near, far) =

2near
right—left

0

0
0

In OpenGL.:

right+left
0 right—left 0
2near top+bottom 0
top—bottom top—bottom
0 —(far+near) —2far-near
far—mear far—near
0 —1 0

glFrustum(left, right, bottom, top, near, far)

13

= UCSD

Perspective Projection Matrix

» Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

Camera T

coordinates

Ppersp (FOV, aSp€Ct, near, fa}") =

In OpenGL.:

y=top

FOV ‘

A 4

/

Z=-near

z=-far
1
aspect - tan(FOV [2)
0 1
tan(FOV /2)
0 0
0 0

gluPerspective(fov, aspect, near, far)

14

0

0

near + far

0

0

2 -near - far

near — far
-1

near — far

0

= UCSD

Canonical View Volume

» Goal: create projection matrix so that

User defined view volume is transformed into canonical
view volume: cube [-1,1]x[-1,1]x[-1,1]

Multiplying corner vertices of view volume by projection
matrix and performing homogeneous divide yields corners
of canonical view volume

» Perspective and orthographic projection are treated
the same way

» Canonical view volume is last stage in which
coordinates are in 3D
Next step is projection to 2D frame buffer

” = UCSD

Viewport Transformation

» After applying projection matrix, scene points are in normalized

viewing coordinates

Per definition within range [-1..1] x [-1..1] x [-1..1]

» Next is projection from 3D to 2D (not reversible)

» Normalized viewing coordinates can be mapped to image
(=pixel=frame buffer) coordinates

Range depends on window (view port) size:

[x0...x1] x [yO0...y1]

» Scale and translation required:

D(XO’xl’yO’yl):

16

_(xl — X)/2
0
0

0

0

(o —)/2

0
0

0 (xo + X,)/2_

0 (v +3)/2
12 12

0 1

= UCSD

Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

17

= UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC 'Mp
Object space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

* = UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC Mp
Object space
World space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

" = UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p’ = DPC Mp
Object space

World space
Camera space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

? = UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p = ﬂPC1%p
Object space
World space
Camera space
Canonical view volume

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

) = UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel

coordinates: p = DlPClMF
Object space

World space
Camera space
Canonical view volume

Image space
M: Object-to-world matrix

C: camera matrix
P: projection matrix

D: viewport matrix

~ = UCSD

Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC 'Mp

/
ch/wl

/
p Pixel coordinates: ,° |
y'fw

x
Y
=1,

"%
M: Object-to-world matrix

C: camera matrix
P: projection matrix

D: viewport matrix

” = UCSD

24

The Complete Vertex Transformation

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix

Complete Vertex Transformation in OpenGL

» Mapping a 3D point in object coordinates to pixel
coordinates:

OpenGL GL_MODELVIEW matrix

p' = DPE Mp
T
OpenGL GL_PROJECTION matrix

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix

> = UCSD

Complete Vertex Transformation in OpenGL

» GL_MODELVIEW, C-'M
Defined by the programmer.

Think of the ModelView matrix as where you stand with the
camera and the direction you point it.

» GL_PROJECTION, P

Utility routines to set it by specifying view volume:
glFrustum(), gluPerspective(), glOrtho()

Think of the projection matrix as describing the attributes
of your camera, such as field of view, focal length, etc.

» Viewport, D
Specify implicitly via glViewport()
No direct access with equivalent to GL_MODELVIEW or
GL PROJECTION

” = UCSD

Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

27

= UCSD

Rendering Pipeline

Scene data » Hardware and software which
lv draws 3D scenes on the screen

» Consists of several stages
Simplified version here

» Most operations performed by

Rendering specialized hardware (GPU)
. . » Access to hardware through
pipeline low-level 3D APl (OpenGL,
DirectX)

» All scene data flows through
the pipeline at least once for
each frame

Image

” = UCSD

Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Textures, lights, etc.
» Geometry

Vertices and how they are
connected

Triangles, lines, points, triangle
strips

Attributes such as color

hid ‘
p

» Specified in obje

» Processed by the rendering
pipeline one-by-one

= UCSD

Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Transform object to camera
coordinates

» Specified by
GL_MODELVIEW matrix
in OpenGL

» User computes
GL_MODELVIEW matrix
as discussed

—1
Pcamera = C Mpobject

MODELVIEW
matrix

= UCSD

Rendering Pipeline
Scene data

Modeling and viewing

transformation g
L g » Look up light sources

Shading » Compute color for each

1 i vertex
Projection i

. 3

Rasterization,
visibility

! <= UCSD

Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

s 1 » Project 3D vertices to 2D
Projection image positions
. 1 » GL_PROJECTION matrix

Rasterization,
visibility

” = UCSD

Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Draw primitives (triangles,
lines, etc.)

» Determine what is visible

Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

|mage 4 Pixel COIOrS

" = UCSD

Rendering Engine

Scene data Rendering Engine:
¥ » Additional software layer
encapsulating low-level API
» Higher level functionality than
Rendering OpenGlL
. . » Platform independent
plpehne » Layered software architecture

common in industry
Game engines

Graphics middleware

Image

” = UCSD

Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

36

= UCSD

Culling

» Goal:

Discard geometry that does not need to be drawn to

speed up rendering
» Types of culling:

View frustum culling
Occlusion culling
Small object culling
Backface culling

Degenerate culling

37

= UCSD

View Frustum Culling

» Triangles outside of view frustum are off-screen

Done on canonical view volume

Images: SGI OpenGL Optimizer Programmer's Guide

> = UCSD

Videos

» Rendering Optimizations - Frustum Culling

» View Frustum Culling Demo

> = UCSD

Bounding Box

» How to cull objects consisting of may polygons!?
» Cull bounding box

Rectangular box, parallel to object space coordinate planes

Box is smallest box containing the entire object

Image: SGI OpenGL Optimizer Programmer's Guide

? = UCSD

Occlusion Culling

» Geometry hidden behind occluder cannot be seen

Many complex algorithms exist to identify occluded geometry

Images: SGI OpenGL Optimizer Programmer's Guide

3 = UCSD

Video

» Umbra 3 Occlusion Culling explained

* = UCSD

Small Object Culling

» Object projects to less than a specified size

Cull objects whose screen-space bounding box is less than a
threshold number of pixels

h = UCSD

Backface Culling

» Consider triangles as “one-sided”, i.e., only visible from
the “front”
» Closed objects
If the “back” of the triangle is facing the camera, it is not visible
Gain efficiency by not drawing it (culling)

Roughly 50% of triangles in a scene are back facing

h = UCSD

Backface Culling

» Convention:
Triangle is front facing if vertices are ordered

counterclockwise
p2 pl

Front-facing pl Back-facing p2
» OpenGL allows one- or two-sided triangles

One-sided triangles:
glEnable(GL_CULL_FACE); glCullFace(GL_BACK)

Two-sided triangles (no backface culling):
gIDisable(GL_CULL_FACE)

» = UCSD

Backface Culling

» Compute triangle normal after projection (homogeneous
division)
n = (p1 — po) X (P2 — Po)
» Third component of n negative: front-facing, otherwise
back-facing

Remember: projection matrix is such that homogeneous
division flips sign of third component

® = UCSD

Degenerate Culling

» Degenerate triangle has no area
Vertices lie in a straight line
Vertices at the exact same place

Normal n=0 =, A

)
A

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48—49

Y = UCSD

Rendering Pipeline
Primitives

Modeling and Viewing
’ Transformation '

s &
Shading

2 B
Projection ;

s = Culling, Clipping
Scan conversion, | |

visibility

e Discard geometry that
will not be visible

* = UCSD

