CSE 167:
Introduction to Computer Graphics
Lecture #4: Projection

Juargen P. Schulze, Ph.D.
University of California, San Diego
Spring Quarter 2015




Announcements

» Project 2 due Friday at |pm

Grading starts at 12 noon

» Project 3 discussion Monday at 4pm
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Perspective Projection

From law of ratios in similar triangles follows:
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By definition: 7'= d

» We can express this using homogeneous coordinates and
4x4 matrices as follows
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Perspective Projection
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Perspective Projection
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» Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

» |t will allow us to:

Handle different types of projections in a unified way

Define arbitrary view volumes



Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling
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View Volumes

» View volume = 3D volume seen by camera

Orthographic view volume Perspective view volume

Camera coordinates Camera coordinates

/0 y
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World coordinates World coordinates
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Projection Matrix
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Orthographic View Volume
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(Infinitely far away)
» Specified by 6 parameters:
Right, left, top, bottom, near, far

» Or, if symmetrical:
Width, height, near, far



Orthographic Projection Matrix
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P . (right,left,top,bottom,near, far) = top —
In OpenGL: 0
glOrtho(left, right, bottom, top, near, far) )
2
width
0 2
P .. (width, height,near, far) = height
. . 0 0
No equivalent in OpenGL
0 0
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Perspective View Volume

General view volume

y=top

Camera
coordinates

VES X yehottom / z=-near 2=-far
x=right

» Defined by 6 parameters, in camera coordinates
Left, right, top, bottom boundaries
Near, far clipping planes

» Clipping planes to avoid numerical problems
Divide by zero
Low precision for distant objects

» Usually symmetric, i.e., left=-right, top=-bottom
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Perspective View Volume

Symmetrical view volume

y=top
T FOV ‘

v

/ z
z=-m
z=-far
» Only 4 parameters
Vertical field of view (FOV) aspect ratio= right —left _ right
Image aspect ratio (width/height) top — bottom  top
Near, far clipping planes tan(FOV /2) = 2P

near
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Perspective Projection Matrix

» General view frustum with 6 parameters

Camera

coordinates y

VCS \

x=left J
%'Z n:}) z=-far
x=right

y= tup

2

Poersp(left, right, top, bottom, near, far) =

2near
right—left

0

0
0

In OpenGL.:

right+left
0 right—left 0
2near top+bottom 0
top—bottom  top—bottom
0 —(far+near) —2far-near
far—mear far—near
0 —1 0

glFrustum(left, right, bottom, top, near, far)
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Perspective Projection Matrix

» Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

Camera T

coordinates

Ppersp (FOV, aSp€Ct, near, fa}") =

In OpenGL.:

y=top

FOV ‘

A 4

/

Z=-near

z=-far
1
aspect - tan(FOV [ 2)
0 1
tan(FOV /2)
0 0
0 0

gluPerspective(fov, aspect, near, far)
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Canonical View Volume

» Goal: create projection matrix so that

User defined view volume is transformed into canonical
view volume: cube [-1,1]x[-1,1]x[-1,1]

Multiplying corner vertices of view volume by projection
matrix and performing homogeneous divide yields corners
of canonical view volume

» Perspective and orthographic projection are treated
the same way

» Canonical view volume is last stage in which
coordinates are in 3D
Next step is projection to 2D frame buffer
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Viewport Transformation

» After applying projection matrix, scene points are in normalized

viewing coordinates

Per definition within range [-1..1] x [-1..1] x [-1..1]

» Next is projection from 3D to 2D (not reversible)

» Normalized viewing coordinates can be mapped to image
(=pixel=frame buffer) coordinates

Range depends on window (view port) size:

[x0...x1] x [yO0...y1]

» Scale and translation required:

D(XO’xl’yO’yl):
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Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC 'Mp
Object space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC Mp
Object space
World space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p’ = DPC Mp
Object space

World space
Camera space

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p = ﬂPC1%p
Object space
World space
Camera space
Canonical view volume

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel

coordinates: p = DlPClMF
Object space

World space
Camera space
Canonical view volume

Image space
M: Object-to-world matrix

C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation

» Mapping a 3D point in object coordinates to pixel
coordinates:

p' = DPC 'Mp

/
ch/wl

/
p Pixel coordinates: ,° |
y'fw

x
Y
=1,

"%
M: Object-to-world matrix

C: camera matrix
P: projection matrix

D: viewport matrix
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The Complete Vertex Transformation

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix




Complete Vertex Transformation in OpenGL

» Mapping a 3D point in object coordinates to pixel
coordinates:

OpenGL GL_MODELVIEW matrix

p' = DPE Mp
T
OpenGL GL_PROJECTION matrix

M: Object-to-world matrix
C: camera matrix
P: projection matrix

D: viewport matrix
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Complete Vertex Transformation in OpenGL

» GL_MODELVIEW, C-'M
Defined by the programmer.

Think of the ModelView matrix as where you stand with the
camera and the direction you point it.

» GL_PROJECTION, P

Utility routines to set it by specifying view volume:
glFrustum(), gluPerspective(), glOrtho()

Think of the projection matrix as describing the attributes
of your camera, such as field of view, focal length, etc.

» Viewport, D
Specify implicitly via glViewport()
No direct access with equivalent to GL_MODELVIEW or
GL PROJECTION
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Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

27

= UCSD



Rendering Pipeline

Scene data » Hardware and software which
lv draws 3D scenes on the screen

» Consists of several stages
Simplified version here

» Most operations performed by

Rendering specialized hardware (GPU)
. . » Access to hardware through
pipeline low-level 3D APl (OpenGL,
DirectX)

» All scene data flows through
the pipeline at least once for
each frame

Image
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Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Textures, lights, etc.
» Geometry

Vertices and how they are
connected

Triangles, lines, points, triangle
strips

Attributes such as color

hid ‘
p

» Specified in obje

» Processed by the rendering
pipeline one-by-one

= UCSD



Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Transform object to camera
coordinates

» Specified by
GL_MODELVIEW matrix
in OpenGL

» User computes
GL_MODELVIEW matrix
as discussed

—1
Pcamera = C Mpobject

MODELVIEW
matrix
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Rendering Pipeline
Scene data

Modeling and viewing

transformation g
L g » Look up light sources

Shading » Compute color for each

1 i vertex
Projection i

. 3

Rasterization,
visibility
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Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

s 1 » Project 3D vertices to 2D
Projection image positions
. 1 » GL_PROJECTION matrix

Rasterization,
visibility
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Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

» Draw primitives (triangles,
lines, etc.)

» Determine what is visible




Rendering Pipeline
Scene data

Modeling and viewing
' transformation '

s &
Shading

. 3

Projection

. 3

Rasterization,
visibility

|mage 4 Pixel COIOrS
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Rendering Engine

Scene data Rendering Engine:
¥ » Additional software layer
encapsulating low-level API
» Higher level functionality than
Rendering OpenGlL
. . » Platform independent
plpehne » Layered software architecture

common in industry
Game engines

Graphics middleware

Image

” = UCSD



Lecture Overview

» View Volumes

» Vertex Transformation
» Rendering Pipeline

» Culling

36
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Culling

» Goal:

Discard geometry that does not need to be drawn to

speed up rendering
» Types of culling:

View frustum culling
Occlusion culling
Small object culling
Backface culling

Degenerate culling
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View Frustum Culling

» Triangles outside of view frustum are off-screen

Done on canonical view volume

Images: SGI OpenGL Optimizer Programmer's Guide
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Videos

» Rendering Optimizations - Frustum Culling

» View Frustum Culling Demo
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Bounding Box

» How to cull objects consisting of may polygons!?
» Cull bounding box

Rectangular box, parallel to object space coordinate planes

Box is smallest box containing the entire object

Image: SGI OpenGL Optimizer Programmer's Guide
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Occlusion Culling

» Geometry hidden behind occluder cannot be seen

Many complex algorithms exist to identify occluded geometry

Images: SGI OpenGL Optimizer Programmer's Guide
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Video

» Umbra 3 Occlusion Culling explained
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Small Object Culling

» Object projects to less than a specified size

Cull objects whose screen-space bounding box is less than a
threshold number of pixels
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Backface Culling

» Consider triangles as “one-sided”, i.e., only visible from
the “front”
» Closed objects
If the “back” of the triangle is facing the camera, it is not visible
Gain efficiency by not drawing it (culling)

Roughly 50% of triangles in a scene are back facing
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Backface Culling

» Convention:
Triangle is front facing if vertices are ordered

counterclockwise
p2 pl

Front-facing pl Back-facing p2
» OpenGL allows one- or two-sided triangles

One-sided triangles:
glEnable(GL_CULL_FACE); glCullFace(GL_BACK)

Two-sided triangles (no backface culling):
gIDisable(GL_CULL_FACE)
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Backface Culling

» Compute triangle normal after projection (homogeneous
division)
n = (p1 — po) X (P2 — Po)
» Third component of n negative: front-facing, otherwise
back-facing

Remember: projection matrix is such that homogeneous
division flips sign of third component
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Degenerate Culling

» Degenerate triangle has no area
Vertices lie in a straight line
Vertices at the exact same place

Normal n=0 =, A

)
A

Source: Computer Methods in Applied Mechanics
and Engineering, Volume 194, Issues 48—49
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Rendering Pipeline
Primitives

Modeling and Viewing
’ Transformation '

s &
Shading

2 B
Projection ;

s = Culling, Clipping
Scan conversion, | |

visibility

e Discard geometry that
will not be visible
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