
CSE 167:

Introduction to Computer Graphics

Lecture #4: Projection

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Spring Quarter 2015

Announcements

� Project 2 due Friday at 1pm

� Grading starts at 12 noon

� Project 3 discussion Monday at 4pm

2

Perspective Projection

From law of ratios in similar triangles follows:

� We can express this using homogeneous coordinates and
4x4 matrices as follows

Image plane

1

1'

z

y

d

y
=

1

1'
z

dy
y =

dz ='

1

1'
z

dx
x =

3

�

Similarly:

By definition:

Perspective Projection

Homogeneous divisionProjection matrix

1

1'
z

dy
y =

dz ='

1

1'
z

dx
x =

4

Perspective Projection

� Using projection matrix, homogeneous division seems more complicated
than just multiplying all coordinates by d/z, so why do it?

� It will allow us to:

� Handle different types of projections in a unified way

� Define arbitrary view volumes

Projection matrix P

5

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

6

View Volumes

� View volume = 3D volume seen by camera

World coordinates

Camera coordinates

Perspective view volume

World coordinates

Camera coordinates

Orthographic view volume

7

Projection

matrix

Projection Matrix

Camera coordinates

Canonical view volume

8

Image space

(pixel coordinates)

Viewport

transformation

Orthographic View Volume

� Specified by 6 parameters:

� Right, left, top, bottom, near, far

� Or, if symmetrical:

� Width, height, near, far

9

Orthographic Projection Matrix

Portho(right,left,top,bottom,near, far) =

2

right − left
0 0 −

right + left

right − left

0
2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

far − near

far + near

far − near

0 0 0 1

Portho(width,height,near, far) =

2

width
0 0 0

0
2

height
0 0

0 0
2

far − near

far + near

far − near

0 0 0 1

10

In OpenGL:
glOrtho(left, right, bottom, top, near, far)

No equivalent in OpenGL

Perspective View Volume

General view volume

� Defined by 6 parameters, in camera coordinates
� Left, right, top, bottom boundaries
� Near, far clipping planes

� Clipping planes to avoid numerical problems
� Divide by zero
� Low precision for distant objects

� Usually symmetric, i.e., left=-right, top=-bottom

Camera

coordinates

11

Perspective View Volume

Symmetrical view volume

� Only 4 parameters

� Vertical field of view (FOV)

� Image aspect ratio (width/height)

� Near, far clipping planes

-z

FOV

y

z=-near

z=-far

y=top

aspect ratio=
right − left

top − bottom
=

right

top

tan(FOV / 2) =
top

near

12

Perspective Projection Matrix

� General view frustum with 6 parameters

Camera

coordinates

13

In OpenGL:
glFrustum(left, right, bottom, top, near, far)

Perspective Projection Matrix

� Symmetrical view frustum with field of view, aspect
ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1

aspect ⋅ tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near − far

2 ⋅ near ⋅ far

near − far

0 0 −1 0

-z

FOV

y

z=-near

z=-far

y=top

Camera

coordinates

14

In OpenGL:

gluPerspective(fov, aspect, near, far)

Canonical View Volume

� Goal: create projection matrix so that

� User defined view volume is transformed into canonical
view volume: cube [-1,1]x[-1,1]x[-1,1]

� Multiplying corner vertices of view volume by projection
matrix and performing homogeneous divide yields corners
of canonical view volume

� Perspective and orthographic projection are treated
the same way

� Canonical view volume is last stage in which
coordinates are in 3D

� Next step is projection to 2D frame buffer

15

Viewport Transformation

� After applying projection matrix, scene points are in normalized
viewing coordinates

� Per definition within range [-1..1] x [-1..1] x [-1..1]

� Next is projection from 3D to 2D (not reversible)

� Normalized viewing coordinates can be mapped to image
(=pixel=frame buffer) coordinates

� Range depends on window (view port) size:
[x0…x1] x [y0…y1]

� Scale and translation required:

D x0 , x1, y0 , y1()=

x1 − x0() 2 0 0 x0 + x1() 2

0 y1 − y0() 2 0 y0 + y1() 2

0 0 1 2 1 2

0 0 0 1

16

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

17

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

Object space

18

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

19

Object space

World space

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

20

Object space

World space

Camera space

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

21

Object space

World space

Camera space

Canonical view volume

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

22

Object space

World space

Camera space

Image space

Canonical view volume

Complete Vertex Transformation

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

23

Pixel coordinates:

The Complete Vertex Transformation

24

Model
Matrix

Camera
Matrix

Projection
Matrix

Viewport
Matrix

Object
Coordinates

World
Coordinates

Camera
Coordinates

Canonical
View Volume
Coordinates

Window
Coordinates

Complete Vertex Transformation in OpenGL

� Mapping a 3D point in object coordinates to pixel
coordinates:

� M: Object-to-world matrix

� C: camera matrix

� P: projection matrix

� D: viewport matrix

25

OpenGL GL_MODELVIEW matrix

OpenGL GL_PROJECTION matrix

Complete Vertex Transformation in OpenGL

� GL_MODELVIEW, C-1M
� Defined by the programmer.

� Think of the ModelView matrix as where you stand with the
camera and the direction you point it.

� GL_PROJECTION, P
� Utility routines to set it by specifying view volume:

glFrustum(), gluPerspective(), glOrtho()

� Think of the projection matrix as describing the attributes
of your camera, such as field of view, focal length, etc.

� Viewport, D

� Specify implicitly via glViewport()

� No direct access with equivalent to GL_MODELVIEW or
GL_PROJECTION

26

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

27

Rendering Pipeline

Scene data

Image

� Hardware and software which
draws 3D scenes on the screen

� Consists of several stages
� Simplified version here

� Most operations performed by
specialized hardware (GPU)

� Access to hardware through
low-level 3D API (OpenGL,
DirectX)

� All scene data flows through
the pipeline at least once for
each frame

Rendering

pipeline

28

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Textures, lights, etc.

� Geometry

� Vertices and how they are
connected

� Triangles, lines, points, triangle
strips

� Attributes such as color

� Specified in object coordinates

� Processed by the rendering
pipeline one-by-one

29

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Transform object to camera
coordinates

� Specified by
GL_MODELVIEW matrix
in OpenGL

� User computes
GL_MODELVIEW matrix
as discussed

MODELVIEW

matrix

30

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Look up light sources

� Compute color for each
vertex

31

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Project 3D vertices to 2D
image positions

� GL_PROJECTION matrix

32

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image

� Draw primitives (triangles,
lines, etc.)

� Determine what is visible

33

Rendering Pipeline

Modeling and viewing

transformation

Shading

Projection

Rasterization,

visibility

Scene data

Image � Pixel colors
34

Rendering Engine

Scene data

Image

Rendering Engine:

� Additional software layer
encapsulating low-level API

� Higher level functionality than
OpenGL

� Platform independent

� Layered software architecture
common in industry

� Game engines

� Graphics middleware

Rendering

pipeline

35

Lecture Overview

� View Volumes

� Vertex Transformation

� Rendering Pipeline

� Culling

36

Culling

� Goal:
Discard geometry that does not need to be drawn to
speed up rendering

� Types of culling:
� View frustum culling

� Occlusion culling

� Small object culling

� Backface culling

� Degenerate culling

37

View Frustum Culling

� Triangles outside of view frustum are off-screen

� Done on canonical view volume

38

Images: SGI OpenGL Optimizer Programmer's Guide

Videos

� Rendering Optimizations - Frustum Culling

� http://www.youtube.com/watch?v=kvVHp9wMAO8

� View Frustum Culling Demo

� http://www.youtube.com/watch?v=bJrYTBGpwic

39

Bounding Box

� How to cull objects consisting of may polygons?

� Cull bounding box

� Rectangular box, parallel to object space coordinate planes

� Box is smallest box containing the entire object

40

Image: SGI OpenGL Optimizer Programmer's Guide

Occlusion Culling

� Geometry hidden behind occluder cannot be seen

� Many complex algorithms exist to identify occluded geometry

41

Images: SGI OpenGL Optimizer Programmer's Guide

Video

� Umbra 3 Occlusion Culling explained

� http://www.youtube.com/watch?v=5h4QgDBwQhc

42

Small Object Culling

� Object projects to less than a specified size

� Cull objects whose screen-space bounding box is less than a
threshold number of pixels

43

Backface Culling

� Consider triangles as “one-sided”, i.e., only visible from
the “front”

� Closed objects

� If the “back” of the triangle is facing the camera, it is not visible

� Gain efficiency by not drawing it (culling)

� Roughly 50% of triangles in a scene are back facing

44

Backface Culling

� Convention:
Triangle is front facing if vertices are ordered
counterclockwise

� OpenGL allows one- or two-sided triangles
� One-sided triangles:

glEnable(GL_CULL_FACE); glCullFace(GL_BACK)
� Two-sided triangles (no backface culling):

glDisable(GL_CULL_FACE)

p0

p1

p2

p0

p1

p2
Front-facing Back-facing

45

Backface Culling

� Compute triangle normal after projection (homogeneous
division)

� Third component of n negative: front-facing, otherwise
back-facing

� Remember: projection matrix is such that homogeneous
division flips sign of third component

46

Degenerate Culling

� Degenerate triangle has no area

� Vertices lie in a straight line

� Vertices at the exact same place

� Normal n=0

47

Source: Computer Methods in Applied Mechanics

and Engineering, Volume 194, Issues 48–49

Rendering Pipeline

Modeling and Viewing

Transformation

Shading

Projection

Scan conversion,

visibility

Primitives

Image

Culling, Clipping

• Discard geometry that

will not be visible

48

