
CSE 167 Fall 2020

Discussion 6 - Nov. 10, 2020

Project 3

● Project specifications at:
○ http://ivl.calit2.net/wiki/index.php/Project3F20

● Features to implement:
○ texturing
○ sky box
○ environment mapping
○ scene graph

http://ivl.calit2.net/wiki/index.php/Project3F20

Scene Graph

Scene Graph

Scene Graph

● Need 3 classes:

○ Node class

■ Base class with a virtual void draw and update functions

○ Transform class

■ Responsible for transformations

○ Geometry class

■ Similar to your PointCloud class

■ Responsible for drawing the objects

● Will create either a Transform or Geometry type object

Scene Graph
Transform

nodes

Scene Graph

Geometry nodes

Node Class

● Abstract base class

○ Need to set up the functions that you want both Geometry and Transform

classes to have

Transform Class

● Derive from Node class

● Functions:

○ draw & update (b/c inheriting from Node)

○ addChild

● Member variables:

○ Transform matrix

■ Matrix that places object relative to parent

○ List of child Nodes

Geometry Class

● Derive from Node class

● Can take straight from PointCloud.cpp

● Functions:

○ draw & update (b/c inheriting from Node)

○ Load, parse… any helper functions you may have had

● Member Variables:

○ model

○ VAO, VBO(s), EBO…

○ Points, normals, indices...

Scene Graph
Building

BaseGeo = new Geometry(“base.obj”)

FerrisWheelGeo = new Geometry(“wheel.obj”)

PodGeo = new Geometry("pod.obj")

Scene Graph
Building

World = new Transform(I)

WheelSpin = new Transform(I)

PodSuspension[] = new Transform(I)

PodSpin[] = new Transform(I)

Scene Graph
Building

World.addChild(WheelSpin)

WheelSpin.addChild(PodSuspension[])

PodSuspension[].addChild(PodSpin[])

Scene Graph
Building

World.addChild(BaseGeo)

WheelSpin.addChild(WheelGeo)

PodSpin[].addChild(PodGeo)

Scene Graph
Drawing

World>draw()

● World>draw()

● Job of Transform’s draw call is to make sure that all its children
get drawn
○ Loop through all child nodes
○ Call draw on all child nodes

Scene Graph
Drawing

Scene Graph
Drawing

● Job of Transform’s draw call is to make sure that all its children get drawn in the

correct position

○ Loop through all child nodes

○ Call draw on all child nodes

● Need to make sure to pass along your transform so the child knows where to go

○ Pass down an updated matrix in the draw function

Scene Graph
Drawing

● Transform draw call:

○ Loop through children

○ Call draw on all children, passing:

■ ShaderProgram

● So can pass the model matrix to the shader

■ Matrix

● So we know where to draw the object

Scene Graph
Drawing

● Geometry draw call:

○ Calculate toWorld matrix

■ Based on the passed in matrix and the geometry’s initial model

matrix

○ Send that toWorld matrix to the shader

○ glDrawElements(...)

Animation

Animation

● Need 3 layers of animation independent of each other

● Need to make ride animate

● How?
○ Need to update matrices in transformation nodes

○ Want cyclic motion for linear motion (back and forth, requires direction

inversion)

● Where?
○ With the rest of our update calls

Animation

● Where?

○ initialize_objects()

■ Build Ride

○ display_callback()

■ Draw ride by calling draw() on root node (root->draw(...))

○ idle_callback()

■ Animate by calling update functions (root->update(...))

Sky Box

Sky box

● A new set of shaders for sky boxes is needed
● Cube from starter code can be modified and used for skybox
● Tutorial link:

https://learnopengl.com/Advanced-OpenGL/Cubemaps

https://learnopengl.com/Advanced-OpenGL/Cubemaps

Sky box

● Select your skybox:

○ http://www.f-lohmueller.de/pov_tut/skyboxer/sky
boxer_3.htm

○ Create your own high resolution box textures

○ Make sure the orientations are correct as shown

on the right

http://www.f-lohmueller.de/pov_tut/skyboxer/skyboxer_3.htm
http://www.f-lohmueller.de/pov_tut/skyboxer/skyboxer_3.htm

Sky box

● Set up the cube for the skybox and place the camera inside the cube

http://www.f-lohmueller.de/pov_tut/backgrnd/p_sky9.htm

http://www.f-lohmueller.de/pov_tut/backgrnd/p_sky9.htm

Sky box

● Coding guide:

a. Create a cube object. In Skybox.cpp or Cube.cpp, create VAO,

VBO and set of vertices just like before.

b. Create a simple shader program for Skybox,

■ skybox.vert: map input position to texcoords directly.

■ skybox.frag: calculate Fragcolor based on texturecoords

using built-in function texture.

c. Create a loadCubemap function to set up 6 textures and return a texture ID.

d. In the render loop, choose to use the shader program from b. , bind vertex

array to the VAO of skybox from a. , and bind GL_TEXTURE_CUBE_MAP to

the texture ID created in c.

http://www.f-lohmueller.de/pov_tut/backgrnd/p_sky9.htm

http://www.f-lohmueller.de/pov_tut/backgrnd/p_sky9.htm

How to render skybox with front face culling

Cube uses counter-clockwise triangles. Here are 2
options to display the inside of the cube as skybox:

1. glEnable(GL_CULL_FACE);
glCullFace(GL_FRONT);

2. Telling GL it is defined clockwise:
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);

Note: the GL_FRONT and GL_BACK here means the
front and the back of a triangle that is being
rendered. The front and back is defined by
glFrontFace.

Tutorial: https://learnopengl.com/Advanced-OpenGL/Face-culling

https://learnopengl.com/Advanced-OpenGL/Face-culling

Common mistakes

● Wrong texture orientation (mirrored or
rotated)

● Discontinuities at edges (see picture on
right)

● Incorrect face culling

Disco Ball

● Mirror reflection effect with low polygon ball model
● Create polygon mesh for ball with adjustable number of quads

● Add environment mapping to shader files shader.vert and
shader.frag

● Lighting code is no longer required here
● Tutorial link:

https://learnopengl.com/Advanced-OpenGL/Cubemaps

https://learnopengl.com/Advanced-OpenGL/Cubemaps

Environment Mapping

● R: reflection vector
● N: normal
● I: view direction
● Calculate reflection vector using

GLSL built-in function reflect()

