
CSE 167:

Introduction to Computer Graphics

Lecture #7: Lights

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2013



Announcements

� Homework project #3 due tomorrow

� Starts at 1:30pm as usual.

� Grading in order of names on white board in labs 260 and 270.

� Last day for late submissions of project #2: tomorrow

� Monday: 

� No new homework assignment,
but midterm review session in Center Hall 105 at 3pm

2



Note on Z-Buffering

� To interpolate Z during rasterization:

� inv_Z = b0*(1/z0) + b1*(1/z1) + b2*(1/z2)

� then Z = 1/inv_Z

3



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

4



Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� OpenGL uses a drastically simplified model to allow 
real-time rendering

5



OpenGL Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the cl values)

� Standard light sources in OpenGL

� Directional: from a specific direction 

� Point light source: from a specific point

� Spotlight: from a specific point with intensity that depends on 
direction

6



Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere 

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface

7



Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the 
distance from the light

� Reason for inverse square falloff: 
Surface area A of sphere:

A = 4 π r2

8



Point Lights in Theory

cl

v

p
csrc

cl

v

Light source

Receiving surface

9

At any point v on the 

surface:



Point Lights in OpenGL

� OpenGL model for distance attenuation:

� Attenuation parameters:

� kc = constant attenuation, default: 1

� kl = linear attenuation, default: 0

� kq = quadratic attenuation, default: 0

� Default: no attenuation: cl=csrc
� Change attenuation parameters with:

� GL_CONSTANT_ATTENUATION

� GL_LINEAR_ATTENUATION

� GL_QUADRATIC_ATTENUATION

cl =
csrc

kc + kl p − v + kq p − v
2

10



� Like point source, but intensity depends on direction

Parameters

� Position: location of the light source

� Spot direction: center axis of the light source

� Falloff parameters:

� Beam width (cone angle)

� The way the light tapers off at the edges of the beam (cosine 
exponent)

Spotlights

11



Spotlights

Light source

Receiving surface

12



Spotlights

Photograph of real spotlight Spotlights in OpenGL

13



Video

� C++ OpenGL Lesson 4: Basic Lighting 

� http://www.youtube.com/watch?v=g_0yV7jZvGg

14



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

15



Types of Geometry Shading

� Per-triangle

� Per-vertex

� Per-pixel

16



Per-Triangle Shading

� Known as flat shading

� Evaluate shading once per 
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance

17



Per-Vertex Shading

� Known as Gouraud shading 
(Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles with 
Barycentric Interpolation

� Advantages
� Fast

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights

18



Per-Pixel Shading

� Also known as Phong Interpolation (not to 
be confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow

19

Source: Penny Rheingans, UMBC



Gouraud vs. Per-Pixel Shading

� Gouraud has problems with highlights

� More triangles would improve result, but reduce frame 
rate

Gouraud Per-Pixel

20



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

21



Shading with Fixed-Function Pipeline

� Fixed-function pipeline only allows Gouraud (per-
vertex) shading

� We need to provide a normal vector for each vertex
� Shading is performed in camera space

� Position and direction of light sources are transformed by 
GL_MODELVIEW matrix

� If light sources should be in object space:
� Set GL_MODELVIEW to desired object-to-camera 
transformation

� Use object space coordinates for light positions

� More information:
� http://glprogramming.com/red/chapter05.html

� http://www.falloutsoftware.com/tutorials/gl/gl8.htm

22



Tips for Transforming Normals

� If you need to (manually) transform geometry by a 
transformation matrix M, which includes shearing or scaling:

� Transforming the normals with M will not work: transformed normals
are no longer perpendicular to surfaces

� Solution: transform the normals differently:

� Either transform the end points of the normal vectors separately

� Or transform normals with

� Find derivation on-line at:

� http://www.oocities.com/vmelkon/transformingnormals.html

� OpenGL does this automatically if the following command is 
used:

� glEnable(GL_NORMALIZE)

23



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

24



Programmable Shaders in OpenGL

� Initially, OpenGL only had a fixed-function pipeline for 
shading

� Programmers wanted more flexibility, similar to 
programmable shaders in raytracing software (term 
“shader” first introduced by Pixar in 1988)

� First shading languages came out in 2002: 
� Cg (C for Graphics, created by Nvidia)

� HLSL (High Level Shader Language, created by Microsoft)

� They supported:
� Fragment shaders: allowed per-pixel shading

� Vertex shaders: allowed modification of geometry

25



Programmable Shaders in OpenGL

� OpenGL 2.0 supported the OpenGL Shading 
Language (GLSL) in 2003

� Geometry shaders were added in OpenGL 3.2

� Tessellation shaders were added in OpenGL 4.0

� Programmable shaders allow real-time: 
Shadows, environment mapping, per-pixel lighting, 
bump mapping, parallax bump mapping, HDR, etc.

26



Demo

� NVIDIA Froggy
� http://www.nvidia.com/coolstuff/demos#!/froggy

� Features

� Bump mapping shader for Froggy’s skin

� Physically-based lighting model simulating sub-surface scattering

� Supersampling for scene anti-aliasing

� Raytracing shader for irises to simulate refraction for wet and 
shiny eyes

� Dynamically-generated lights and shadows

27



Shader Programs

� Programmable shaders consist of shader programs

� Written in a shading language

� Syntax similar to C language

� Each shader is a separate piece of code in a separate ASCII text file

� Shader types:

� Vertex shader

� Tessellation shader

� Geometry shader

� Fragment shader (a.k.a. pixel shader)

� The programmer can provide any number of shader types to 
work together to achieve a certain effect

� If a shader type is not provided, OpenGL’s fixed-function 
pipeline is used

28



Frame-buffer access

(z-buffering)

Programmable Pipeline

� Executed once per vertex:

� Vertex Shader

� Tessellation Shader

� Geometry Shader

� Executed once per fragment:

� Fragment Shader

29

Modeling and viewing

transformation

Shading

Projection

Rasterization

Scene

Image

Fragment processing



Vertex Shader

� Executed once per vertex

� Cannot create or remove vertices

� Does not know the primitive it belongs to

� Replaces functionality for

� Model-view, projection transformation

� Per-vertex shading

� If you use a vertex program, you need to implement behavior 
for the above functionality in the program!

� Typically used for:

� Character animation

� Particle systems

30



Tessellation Shader

� Executed once per primitive

� Generates new primitives by subdividing each line, triangle or 
quad primitive

� Typically used for:

� Adapting visual quality to the required level of detail

� For instance, for automatic tessellation of Bezier curves and surfaces

� Geometry compression: 3D models stored at coarser level of 
resolution, expanded at runtime

� Allows detailed displacement maps for less detailed geometry

31



Geometry Shader

� Executed once per primitive (triangle, quad, etc.)

� Can create new graphics primitives from output of tessellation 
shader (e.g., points, lines, triangles)

� Or can remove the primitive

� Typically used for:

� Per-face normal computation

� Easy wireframe rendering

� Point sprite generation

� Shadow volume extrusion

� Single pass rendering to a cube map

� Automatic mesh complexity modification (depending on resolution 
requirements)

32



Fragment Shader

� A.k.a. Pixel Shader

� Executed once per fragment

� Cannot access other pixels or vertices

� Makes execution highly parallelizable

� Computes color, opacity, z-value, texture 
coordinates

� Typically used for:

� Per-pixel shading (e.g., Phong shading)

� Advanced texturing

� Bump mapping

� Shadows
33



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

34



Vertex Programs

Vertex

program

Vertex Attributes

From Application

To Rasterizer

Output Variables

Uniform Parameters

35



Vertex Attributes

� Declared using the attribute storage classifier

� Different for each execution of the vertex program

� Can be modified by the vertex program

� Two types:

� Pre-defined OpenGL attributes. Examples:
attribute vec4 gl_Vertex;

attribute vec3 gl_Normal;

attribute vec4 gl_Color;

� User-defined attributes. Example:
attribute float myAttrib;

36



Uniform Parameters

� Declared by uniform storage classifier

� Normally the same for all vertices

� Read-only

� Two types:

� Pre-defined OpenGL state variables

� User-defined parameters

37



Uniform Parameters: Pre-Defined

� Provide access to the OpenGL state

� Examples for pre-defined variables:
uniform mat4 gl_ModelViewMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl_ProjectionMatrix;

uniform gl_LightSourceParameters

gl_LightSource[gl_MaxLights]; 

38



Uniform Parameters: User-Defined

� Parameters that are set by the application

� Should not be changed frequently

� Especially not on a per-vertex basis!

� To access, use glGetUniformLocation, glUniform*

in application

� Example:

� In shader declare
uniform float a;

� Set value of a in application:
GLuint p;

int I = glGetUniformLocation(p,”a”); 

glUniform1f(i, 1.0f);

39



Vertex Programs: Output Variables

� Required output: homogeneous vertex coordinates
vec4 gl_Position

� varying output variables

� Mechanism to send data to the fragment shader

� Will be interpolated during rasterization

� Fragment shader gets interpolated data

� Pre-defined varying output variables, for example:
varying vec4 gl_FrontColor;

varying vec4 gl_TexCoord[];

Any pre-defined output variable that you do not overwrite will 
have the value of the OpenGL state.

� User-defined varying output variables, e.g.:

varying vec4 vertex_color;

40



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

41



Fragment Programs

Fragment

program

Fragment Data

From Rasterizer

To Frame Buffer

Output Variables

Uniform Parameters

42



Fragment Data

� Changes for each execution of the fragment program

� Fragment data includes:

� Interpolated standard OpenGL variables for fragment 
shader, as generated by vertex shader, for example:
varying vec4 gl_Color;

varying vec4 gl_TexCoord[];

� Interpolated varying variables from vertex shader

� Allows data to be passed from vertex to fragment shader

43



Uniform Parameters

� Same as in vertex programs

44



Output Variables

� Pre-defined output variables:
� gl_FragColor

� gl_FragDepth

� OpenGL writes these to the frame buffer

� Result is undefined if you do not set these variables!

45



Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

46



GLSL Main Features

� Similar to C language

� attribute, uniform, varying storage classifiers 

� Set of predefined variables

� Access to per-vertex, per-fragment data

� Access OpenGL state

� Built-in vector data types, vector operations

� No pointers

� No direct access to data or variables in your C++ 
code 

47



Example: Treat normals as colors
// Vertex Shader

varying vec4 color;

void main()

{

// Treat the normal (x, y, z) values as (r, g, b) color 

components.

color = vec4(clamp(abs((gl_Normal + 1.0) * 0.5), 0.0, 1.0), 

1.0);

gl_Position = ftransform();

}

// Fragment Shader

varying vec4 color;

void main()

{

gl_FragColor = color;

}

48



Creating Shaders in OpenGL

Source: Gabriel Zachmann, Clausthal University

49



Video

� OpenGL and GLSL Demo 2 

� http://www.youtube.com/watch?v=cQ8P16X0Op8

50



Tutorials and Documentation

� OpenGL and GLSL specifications

� http://www.opengl.org/documentation/specs/

� GLSL tutorials

� http://www.lighthouse3d.com/opengl/glsl/

� http://www.clockworkcoders.com/oglsl/tutorials.html

� OpenGL Programming Guide (Red Book)

� OpenGL Shading Language (Orange Book)

� OpenGL 4.4 API Reference Card

� http://www.khronos.org/files/opengl44-quick-reference-
card.pdf

51


