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Announcements

� Homework project #3 due tomorrow

� Starts at 1:30pm as usual.

� Grading in order of names on white board in labs 260 and 270.

� Last day for late submissions of project #2: tomorrow

� Monday: 

� No new homework assignment,
but midterm review session in Center Hall 105 at 3pm
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Note on Z-Buffering

� To interpolate Z during rasterization:

� inv_Z = b0*(1/z0) + b1*(1/z1) + b2*(1/z2)

� then Z = 1/inv_Z
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Light Sources

� Real light sources can have complex properties

� Geometric area over which light is produced

� Anisotropy (directionally dependent)

� Reflective surfaces act as light sources (indirect light)

� OpenGL uses a drastically simplified model to allow 
real-time rendering
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OpenGL Light Sources

� At each point on surfaces we need to know

� Direction of incoming light (the L vector)

� Intensity of incoming light (the cl values)

� Standard light sources in OpenGL

� Directional: from a specific direction 

� Point light source: from a specific point

� Spotlight: from a specific point with intensity that depends on 
direction
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Directional Light

� Light from a distant source

� Light rays are parallel

� Direction and intensity are the same everywhere 

� As if the source were infinitely far away

� Good approximation of sunlight

� Specified by a unit length direction vector, and a color

Light source

Receiving surface
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Point Lights

� Similar to light bulbs

� Infinitely small point radiates light equally in all directions

� Light vector varies across receiving surface

� What is light intensity over distance proportional to?

� Intensity drops off proportionally to the inverse square of the 
distance from the light

� Reason for inverse square falloff: 
Surface area A of sphere:

A = 4 π r2
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Point Lights in Theory
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Light source

Receiving surface
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At any point v on the 

surface:



Point Lights in OpenGL

� OpenGL model for distance attenuation:

� Attenuation parameters:

� kc = constant attenuation, default: 1

� kl = linear attenuation, default: 0

� kq = quadratic attenuation, default: 0

� Default: no attenuation: cl=csrc
� Change attenuation parameters with:

� GL_CONSTANT_ATTENUATION

� GL_LINEAR_ATTENUATION

� GL_QUADRATIC_ATTENUATION

cl =
csrc

kc + kl p − v + kq p − v
2
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� Like point source, but intensity depends on direction

Parameters

� Position: location of the light source

� Spot direction: center axis of the light source

� Falloff parameters:

� Beam width (cone angle)

� The way the light tapers off at the edges of the beam (cosine 
exponent)

Spotlights
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Spotlights

Light source

Receiving surface
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Spotlights

Photograph of real spotlight Spotlights in OpenGL
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Video

� C++ OpenGL Lesson 4: Basic Lighting 

� http://www.youtube.com/watch?v=g_0yV7jZvGg
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Types of Geometry Shading

� Per-triangle

� Per-vertex

� Per-pixel

16



Per-Triangle Shading

� Known as flat shading

� Evaluate shading once per 
triangle

� Advantage

� Fast

� Disadvantage

� Faceted appearance
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Per-Vertex Shading

� Known as Gouraud shading 
(Henri Gouraud, 1971)

� Interpolates vertex colors 
across triangles with 
Barycentric Interpolation

� Advantages
� Fast

� Smoother surface appearance 
than with flat shading

� Disadvantage
� Problems with small highlights
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Per-Pixel Shading

� Also known as Phong Interpolation (not to 
be confused with Phong Illumination Model)

� Rasterizer interpolates normals (instead of 
colors) across triangles

� Illumination model is evaluated at each pixel

� Simulates shading with normals of a curved 
surface

� Advantage

� Higher quality than Gouraud shading

� Disadvantage

� Slow
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Gouraud vs. Per-Pixel Shading

� Gouraud has problems with highlights

� More triangles would improve result, but reduce frame 
rate

Gouraud Per-Pixel
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Shading with Fixed-Function Pipeline

� Fixed-function pipeline only allows Gouraud (per-
vertex) shading

� We need to provide a normal vector for each vertex
� Shading is performed in camera space

� Position and direction of light sources are transformed by 
GL_MODELVIEW matrix

� If light sources should be in object space:
� Set GL_MODELVIEW to desired object-to-camera 
transformation

� Use object space coordinates for light positions

� More information:
� http://glprogramming.com/red/chapter05.html

� http://www.falloutsoftware.com/tutorials/gl/gl8.htm
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Tips for Transforming Normals

� If you need to (manually) transform geometry by a 
transformation matrix M, which includes shearing or scaling:

� Transforming the normals with M will not work: transformed normals
are no longer perpendicular to surfaces

� Solution: transform the normals differently:

� Either transform the end points of the normal vectors separately

� Or transform normals with

� Find derivation on-line at:

� http://www.oocities.com/vmelkon/transformingnormals.html

� OpenGL does this automatically if the following command is 
used:

� glEnable(GL_NORMALIZE)
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Programmable Shaders in OpenGL

� Initially, OpenGL only had a fixed-function pipeline for 
shading

� Programmers wanted more flexibility, similar to 
programmable shaders in raytracing software (term 
“shader” first introduced by Pixar in 1988)

� First shading languages came out in 2002: 
� Cg (C for Graphics, created by Nvidia)

� HLSL (High Level Shader Language, created by Microsoft)

� They supported:
� Fragment shaders: allowed per-pixel shading

� Vertex shaders: allowed modification of geometry
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Programmable Shaders in OpenGL

� OpenGL 2.0 supported the OpenGL Shading 
Language (GLSL) in 2003

� Geometry shaders were added in OpenGL 3.2

� Tessellation shaders were added in OpenGL 4.0

� Programmable shaders allow real-time: 
Shadows, environment mapping, per-pixel lighting, 
bump mapping, parallax bump mapping, HDR, etc.
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Demo

� NVIDIA Froggy
� http://www.nvidia.com/coolstuff/demos#!/froggy

� Features

� Bump mapping shader for Froggy’s skin

� Physically-based lighting model simulating sub-surface scattering

� Supersampling for scene anti-aliasing

� Raytracing shader for irises to simulate refraction for wet and 
shiny eyes

� Dynamically-generated lights and shadows
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Shader Programs

� Programmable shaders consist of shader programs

� Written in a shading language

� Syntax similar to C language

� Each shader is a separate piece of code in a separate ASCII text file

� Shader types:

� Vertex shader

� Tessellation shader

� Geometry shader

� Fragment shader (a.k.a. pixel shader)

� The programmer can provide any number of shader types to 
work together to achieve a certain effect

� If a shader type is not provided, OpenGL’s fixed-function 
pipeline is used
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Frame-buffer access

(z-buffering)

Programmable Pipeline

� Executed once per vertex:

� Vertex Shader

� Tessellation Shader

� Geometry Shader

� Executed once per fragment:

� Fragment Shader
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Modeling and viewing

transformation

Shading

Projection

Rasterization

Scene

Image

Fragment processing



Vertex Shader

� Executed once per vertex

� Cannot create or remove vertices

� Does not know the primitive it belongs to

� Replaces functionality for

� Model-view, projection transformation

� Per-vertex shading

� If you use a vertex program, you need to implement behavior 
for the above functionality in the program!

� Typically used for:

� Character animation

� Particle systems
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Tessellation Shader

� Executed once per primitive

� Generates new primitives by subdividing each line, triangle or 
quad primitive

� Typically used for:

� Adapting visual quality to the required level of detail

� For instance, for automatic tessellation of Bezier curves and surfaces

� Geometry compression: 3D models stored at coarser level of 
resolution, expanded at runtime

� Allows detailed displacement maps for less detailed geometry
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Geometry Shader

� Executed once per primitive (triangle, quad, etc.)

� Can create new graphics primitives from output of tessellation 
shader (e.g., points, lines, triangles)

� Or can remove the primitive

� Typically used for:

� Per-face normal computation

� Easy wireframe rendering

� Point sprite generation

� Shadow volume extrusion

� Single pass rendering to a cube map

� Automatic mesh complexity modification (depending on resolution 
requirements)
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Fragment Shader

� A.k.a. Pixel Shader

� Executed once per fragment

� Cannot access other pixels or vertices

� Makes execution highly parallelizable

� Computes color, opacity, z-value, texture 
coordinates

� Typically used for:

� Per-pixel shading (e.g., Phong shading)

� Advanced texturing

� Bump mapping

� Shadows
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Vertex Programs

Vertex

program

Vertex Attributes

From Application

To Rasterizer

Output Variables

Uniform Parameters
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Vertex Attributes

� Declared using the attribute storage classifier

� Different for each execution of the vertex program

� Can be modified by the vertex program

� Two types:

� Pre-defined OpenGL attributes. Examples:
attribute vec4 gl_Vertex;

attribute vec3 gl_Normal;

attribute vec4 gl_Color;

� User-defined attributes. Example:
attribute float myAttrib;
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Uniform Parameters

� Declared by uniform storage classifier

� Normally the same for all vertices

� Read-only

� Two types:

� Pre-defined OpenGL state variables

� User-defined parameters
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Uniform Parameters: Pre-Defined

� Provide access to the OpenGL state

� Examples for pre-defined variables:
uniform mat4 gl_ModelViewMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl_ProjectionMatrix;

uniform gl_LightSourceParameters

gl_LightSource[gl_MaxLights]; 
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Uniform Parameters: User-Defined

� Parameters that are set by the application

� Should not be changed frequently

� Especially not on a per-vertex basis!

� To access, use glGetUniformLocation, glUniform*

in application

� Example:

� In shader declare
uniform float a;

� Set value of a in application:
GLuint p;

int I = glGetUniformLocation(p,”a”); 

glUniform1f(i, 1.0f);
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Vertex Programs: Output Variables

� Required output: homogeneous vertex coordinates
vec4 gl_Position

� varying output variables

� Mechanism to send data to the fragment shader

� Will be interpolated during rasterization

� Fragment shader gets interpolated data

� Pre-defined varying output variables, for example:
varying vec4 gl_FrontColor;

varying vec4 gl_TexCoord[];

Any pre-defined output variable that you do not overwrite will 
have the value of the OpenGL state.

� User-defined varying output variables, e.g.:

varying vec4 vertex_color;
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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Fragment Programs

Fragment

program

Fragment Data

From Rasterizer

To Frame Buffer

Output Variables

Uniform Parameters
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Fragment Data

� Changes for each execution of the fragment program

� Fragment data includes:

� Interpolated standard OpenGL variables for fragment 
shader, as generated by vertex shader, for example:
varying vec4 gl_Color;

varying vec4 gl_TexCoord[];

� Interpolated varying variables from vertex shader

� Allows data to be passed from vertex to fragment shader
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Uniform Parameters

� Same as in vertex programs
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Output Variables

� Pre-defined output variables:
� gl_FragColor

� gl_FragDepth

� OpenGL writes these to the frame buffer

� Result is undefined if you do not set these variables!
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Lecture Overview

� OpenGL Light Sources

� Types of Geometry Shading

� Shading in OpenGL

� Fixed-Function Shading

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL
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GLSL Main Features

� Similar to C language

� attribute, uniform, varying storage classifiers 

� Set of predefined variables

� Access to per-vertex, per-fragment data

� Access OpenGL state

� Built-in vector data types, vector operations

� No pointers

� No direct access to data or variables in your C++ 
code 
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Example: Treat normals as colors
// Vertex Shader

varying vec4 color;

void main()

{

// Treat the normal (x, y, z) values as (r, g, b) color 

components.

color = vec4(clamp(abs((gl_Normal + 1.0) * 0.5), 0.0, 1.0), 

1.0);

gl_Position = ftransform();

}

// Fragment Shader

varying vec4 color;

void main()

{

gl_FragColor = color;

}
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Creating Shaders in OpenGL

Source: Gabriel Zachmann, Clausthal University
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Video

� OpenGL and GLSL Demo 2 

� http://www.youtube.com/watch?v=cQ8P16X0Op8
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Tutorials and Documentation

� OpenGL and GLSL specifications

� http://www.opengl.org/documentation/specs/

� GLSL tutorials

� http://www.lighthouse3d.com/opengl/glsl/

� http://www.clockworkcoders.com/oglsl/tutorials.html

� OpenGL Programming Guide (Red Book)

� OpenGL Shading Language (Orange Book)

� OpenGL 4.4 API Reference Card

� http://www.khronos.org/files/opengl44-quick-reference-
card.pdf
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