
CSE 167:

Introduction to Computer Graphics

Lecture #7: Shading

Jürgen P. Schulze, Ph.D.

University of California, San Diego

Fall Quarter 2013



Announcements

� Limited office hours this Thursday: only 3:30-5:30pm

Midterm Exam #1

� This Thursday, Oct 24th

� Location: Center Hall 119

� Time: 2:00pm – 3:20pm

� To bring:

� Pen/pencil, eraser

� Ruler

� Scratch paper

� Photo ID: put on your table until you got checked off

� Not allowed:

� Books, written or printed notes, cell phones, other electronic devices

2



Lecture Overview

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

3



Vertex Programs

Vertex

program

Vertex Attributes

From Application

To Rasterizer

Output Variables

Uniform Parameters

4



Vertex Attributes

� Declared using the attribute storage classifier

� Different for each execution of the vertex program

� Can be modified by the vertex program

� Two types:

� Pre-defined OpenGL attributes. Examples:
attribute vec4 gl_Vertex;

attribute vec3 gl_Normal;

attribute vec4 gl_Color;

� User-defined attributes. Example:
attribute float myAttrib;

5



Uniform Parameters

� Declared by uniform storage classifier

� Normally the same for all vertices

� Read-only

� Two types:

� Pre-defined OpenGL state variables

� User-defined parameters

6



Uniform Parameters: Pre-Defined

� Provide access to the OpenGL state

� Examples for pre-defined variables:
uniform mat4 gl_ModelViewMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl_ProjectionMatrix;

uniform gl_LightSourceParameters

gl_LightSource[gl_MaxLights]; 

7



Uniform Parameters: User-Defined

� Parameters that are set by the application

� Should not be changed frequently

� Especially not on a per-vertex basis!

� To access, use glGetUniformLocation, glUniform*

in application

� Example:

� In shader declare
uniform float a;

� Set value of a in application:
GLuint p;

int I = glGetUniformLocation(p,”a”); 

glUniform1f(i, 1.0f);

8



Vertex Programs: Output Variables

� Required output: homogeneous vertex coordinates
vec4 gl_Position

� varying output variables

� Mechanism to send data to the fragment shader

� Will be interpolated during rasterization

� Fragment shader gets interpolated data

� Pre-defined varying output variables, for example:
varying vec4 gl_FrontColor;

varying vec4 gl_TexCoord[];

Any pre-defined output variable that you do not overwrite will 
have the value of the OpenGL state.

� User-defined varying output variables, e.g.:

varying vec4 vertex_color;

9



Lecture Overview

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

10



Fragment Programs

Fragment

program

Fragment Data

From Rasterizer

To Frame Buffer

Output Variables

Uniform Parameters

11



Fragment Data

� Changes for each execution of the fragment program

� Fragment data includes:

� Interpolated standard OpenGL variables for fragment 
shader, as generated by vertex shader, for example:
varying vec4 gl_Color;

varying vec4 gl_TexCoord[];

� Interpolated varying variables from vertex shader

� Allows data to be passed from vertex to fragment shader

12



Uniform Parameters

� Same as in vertex programs

13



Output Variables

� Pre-defined output variables:
� gl_FragColor

� gl_FragDepth

� OpenGL writes these to the frame buffer

� Result is undefined if you do not set these variables!

14



Lecture Overview

� Programmable Shaders

� Vertex Programs

� Fragment Programs

� GLSL

15



GLSL Main Features

� Similar to C language

� attribute, uniform, varying storage classifiers 

� Set of predefined variables

� Access to per-vertex, per-fragment data

� Access OpenGL state

� Built-in vector data types, vector operations

� No pointers

� No direct access to data or variables in your C++ 
code 

16



Example: Treat normals as colors
// Vertex Shader

varying vec4 color;

void main()

{

// Treat the normal (x, y, z) values as (r, g, b) color 

components.

color = vec4(clamp(abs((gl_Normal + 1.0) * 0.5), 0.0, 1.0), 

1.0);

gl_Position = ftransform();

}

// Fragment Shader

varying vec4 color;

void main()

{

gl_FragColor = color;

}

17



Creating Shaders in OpenGL

Source: Gabriel Zachmann, Clausthal University

18



Video

� OpenGL and GLSL Demo 2 

� http://www.youtube.com/watch?v=cQ8P16X0Op8

19



Tutorials and Documentation

� OpenGL and GLSL specifications

� http://www.opengl.org/documentation/specs/

� GLSL tutorials

� http://www.lighthouse3d.com/opengl/glsl/

� http://www.clockworkcoders.com/oglsl/tutorials.html

� OpenGL Programming Guide (Red Book)

� OpenGL Shading Language (Orange Book)

� OpenGL 4.4 API Reference Card

� http://www.khronos.org/files/opengl44-quick-reference-
card.pdf

20



Lecture Overview

� Texture Mapping

� Overview

� Wrapping

� Texture coordinates

� Anti-aliasing

21



Large Triangles

Pros:

� Often sufficient for simple 
geometry

� Fast to render

Cons:

� Per vertex colors look boring 
and computer-generated

22



Texture Mapping

� Map textures (images) onto 
surface polygons

� Same triangle count, much more 
realistic appearance

23



Texture Mapping

� Goal: map locations in texture to 
locations on 3D geometry

� Texture coordinate space

� Texture pixels (texels) have texture 
coordinates (s,t)

� Convention

� Bottom left corner of texture is at
(s,t) = (0,0)

� Top right corner is at (s,t) = (1,1)

(1,1)

(0,0)
s

t

Texture coordinates

24



Texture Mapping

� Store 2D texture coordinates s,t with each triangle vertex

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

Texture coordinates

(0.65,0.75)

v1

(s,t) = (0.65,0.75) 

Triangle in any space before projection

v0

(s,t) = (0.6,0.4) 

v2

(s,t) = (0.4,0.45) 

25



Texture Mapping

� Each point on triangle has barycentric coordinates α, β, γ

� Barycentric coordinates interpolate texture coordinates

� Done automatically on GPU

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(s,t) = (0.65,0.75) 

v0

(s,t) = (0.6,0.4) 

v2

(s,t) = (0.4,0.45) 

Texture coordinates

Triangle in any space before projection

26



Texture Mapping

� Each point on triangle gets color from its corresponding 
point in texture

(0.4,0.45)

(0.6,0.4)

(1,1)

(0,0)
s

t

(0.65,0.75)

v1

(s,t) = (0.65,0.75) 

v0

(s,t) = (0.6,0.4) 

v2

(s,t) = (0.4,0.45) 

Texture coordinates
Triangle in any space before projection

27



Texture Mapping

Includes texture mapping

Frame-buffer access

(z-buffering)

Modeling and viewing

transformation

Shading

Projection

Rasterization

Primitives

Image

Fragment processing

28



Texture Look-Up

� Given interpolated texture coordinates (s, t) at current 
pixel

� Closest four texels in texture space are at

(s0,t0), (s1,t0), (s0,t1), (s1,t1)

� How to compute pixel color?

29

t1

t

t0

s0 s s1



Nearest-Neighbor Interpolation

� Use color of closest texel

� Simple, but low quality and aliasing

30

t1

t

t0

s0 s s1



Bilinear Interpolation

1. Linear interpolation horizontally:

Ratio in s direction rs:

ctop = tex(s0,t1) (1-rs) + tex(s1,t1) rs
cbot = tex(s0, t0) (1-rs) + tex(s1,t0) rs

31

01

0

ss

ss
r

s

−

−
=

t1

t

t0

s0 s s1

ctop

cbot



2. Linear interpolation vertically

Ratio in t direction rt:

c = cbot (1-rt) + ctop rt

Bilinear Interpolation

32

01

0

tt

tt
r
t

−

−
=

t1

t

t0

s0 s s1

ctop

cbot

c


