CSE 167:
 Introduction to Computer Graphics Lecture \#3: Projection

Jürgen P. Schulze, Ph.D.
University of California, San Diego
Fall Quarter 2014

Announcements

- Project I due Friday, I0/I7
- Discussion section on Mondays is now in a new location at a different time:
- Building CSB (Cognitive Science Building), room 001
- 5:00-5:50pm
- We will have a discussion this coming Monday
- Piazza to replace Ted discussion board
- TA office hours (Dylan) in lab today: 5-7pm
- Independent study positions available (CSE I99):
- Raspberry Pi scripting with Python
- Android app with web backend

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

How to rotate around a Pivot Point?

Rotation around origin:
$p^{\prime}=R p$

Rotation around pivot point:
$\mathrm{p}^{\prime}=$?

Rotating point p around a pivot point

1. Translation $\mathrm{T} \quad$ 2. Rotation $\mathrm{R} \quad$ 3. Translation T^{-1}

$$
\mathrm{p}^{\prime}=\mathrm{T}^{-1} \mathrm{RT} \mathrm{p}
$$

Concatenating transformations

- Given a sequence of transformations $\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}$

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p} \\
\mathbf{M}_{\text {total }}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \\
\mathbf{p}^{\prime}=\mathbf{M}_{\text {total } l} \mathbf{p}
\end{gathered}
$$

- Note: associativity applies:

$$
\mathbf{M}_{\text {total }}=\left(\mathbf{M}_{3} \mathbf{M}_{2}\right) \mathbf{M}_{1}=\mathbf{M}_{3}\left(\mathbf{M}_{2} \mathbf{M}_{1}\right)
$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Coordinate System

- Given point \mathbf{p} in homogeneous coordinates: $\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and origin \mathbf{o} :

Rectangular and Polar Coordinates

Rectangular Coordinates

Polar Coordinates

Images: Wikipedia

Rectangular and Polar Coordinates

National Aeronautics and Space Administration
Rectangular and Polar Coordinates

Point p can be located relative to the origin by Rectangular Coordinates $\left(X_{p}, Y_{p}\right)$ or by Polar Coordinates (r, θ)

$$
\begin{array}{ll}
X_{p}=r \cos (\theta) & r=\operatorname{sqrt}\left(X_{p}^{2}+Y_{p}^{2}\right) \\
Y_{p}=r \sin (\theta) & \theta=\tan -1\left(Y_{p} / X_{p}\right)
\end{array}
$$

Coordinate Transformation

Original xyzo coordinate system

New uvwq coordinate system

Goal: Find coordinates of $\mathbf{p}_{\mathrm{xyz}}$ in new uvwq coordinate system

Coordinate Transformation

Express coordinates of xyzo reference frame with respect to uvwq reference frame:
$\mathbf{x}=\left[\begin{array}{c}x_{u} \\ x_{v} \\ x_{w} \\ 0\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}y_{u} \\ y_{v} \\ y_{w} \\ 0\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{c}z_{u} \\ z_{v} \\ z_{w} \\ 0\end{array}\right] \quad \mathbf{o}=\left[\begin{array}{c}o_{u} \\ o_{v} \\ o_{w} \\ 1\end{array}\right]$

Coordinate Transformation

Point \mathbf{p} expressed in new uvwq reference frame:

$$
\mathbf{p}_{u v w}=p_{x}\left[\begin{array}{c}
x_{u} \\
x_{v} \\
x_{w} \\
0
\end{array}\right]+p_{y}\left[\begin{array}{c}
y_{u} \\
y_{v} \\
y_{w} \\
0
\end{array}\right]+p_{z}\left[\begin{array}{c}
z_{u} \\
z_{v} \\
z_{w} \\
0
\end{array}\right]+\left[\begin{array}{c}
o_{u} \\
o_{v} \\
o_{w} \\
1
\end{array}\right]
$$

Coordinate Transformation

Coordinate Transformation

Inverse transformation

- Given point $\mathbf{P}_{\text {uvw }}$ w.r.t. reference frame uvwq:
- Coordinates $\mathbf{P}_{\text {xyz }}$ w.r.t. reference frame xyzo are calculated as:

$$
\mathbf{p}_{x y z}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & o_{u} \\
x_{v} & y_{v} & z_{v} & o_{v} \\
x_{w} & y_{w} & z_{w} & o_{w} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
p_{u} \\
p_{v} \\
p_{w} \\
1
\end{array}\right]
$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Typical Coordinate Systems

- In computer graphics, we typically use at least three coordinate systems:
- World coordinate system
- Camera coordinate system
- Object coordinate system

World coordinates

World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
- If there is a ground plane, usually x / y is horizontal and z points up (height)
- Otherwise, x / y is often screen plane, z points out of the screen

World coordinates

Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
- Depends on how object is generated or used.

Source: http://motivate.maths.org

World coordinates

Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- Given by "model matrix" (model-to-world transformation) M.

World coordinates

Camera Coordinate System

- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane

World coordinates

Camera Coordinate System

- The Camera Matrix defines the transformation from camera to world coordinates
- Placement of camera in world

World coordinates

Camera Matrix

- Construct from center of projection e, look at d, upvector up:

World coordinates

Camera Matrix

- Construct from center of projection e, look at d, upvector up (up in camera coordinate system):

Camera Matrix

z-axis

$$
z_{C}=\frac{\boldsymbol{e}-\boldsymbol{d}}{\|e-\boldsymbol{d}\|}
$$

(x -axis

$$
\boldsymbol{x}_{C}=\frac{\boldsymbol{u} \boldsymbol{p} \times \boldsymbol{z}_{C}}{\left\|\boldsymbol{u} \boldsymbol{p} \times \boldsymbol{z}_{C}\right\|}
$$

y-axis

$$
\begin{aligned}
& \boldsymbol{y}_{C}=\boldsymbol{z}_{C} \times \boldsymbol{x}_{C}=\frac{\boldsymbol{u p}}{\|\boldsymbol{u} \boldsymbol{p}\|} \\
& \boldsymbol{C}=\left[\begin{array}{cccc}
\boldsymbol{x}_{C} & \boldsymbol{y}_{C} & z_{C} & \boldsymbol{e} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: \mathbf{p}
- Resulting transformation equation: $\mathbf{p}^{\prime}=\mathbf{C}^{-1} \mathbf{M} \mathbf{~ p}$

World coordinates

Tips for Notation

- Indicate coordinate systems with every point or matrix
- Point: ${ }^{\text {object }}$
- Matrix: Mobject \rightarrow world
- Resulting transformation equation:

$$
\mathbf{P}_{\text {camera }}=\left(\mathbf{C}_{\text {camera } \rightarrow \text { world }}\right)^{-1} \mathbf{M}_{\text {object } \rightarrow \text { world }} \mathbf{P}_{\text {object }}
$$

- Helpful hint: in source code use consistent names
- Point: p_object or p_obj or p_o
- Matrix:object2world or obj2wld or o2w
- Resulting transformation equation:

$$
\begin{aligned}
& \text { wld2cam = inverse(cam2wld); } \\
& \text { p_cam }=\text { p_obj } * \text { obj2wld } * \text { wld2cam; }
\end{aligned}
$$

Inverse of Camera Matrix

- How to calculate the inverse of the camera matrix \mathbf{C}^{-1} ?
- Generic matrix inversion is complex and computeintensive
- Affine transformation matrices can be inverted more easily
- Observation:
- Camera matrix consists of translation and rotation: $\mathbf{T} \times \mathbf{R}$
- Inverse of rotation: $\mathbf{R}^{-1}=\mathbf{R}^{\top}$
- Inverse of translation: $\mathbf{T}(\mathrm{t})^{-1}=\mathbf{T}(-\mathrm{t})$
- Inverse of camera matrix: $\mathbf{C}^{-1}=\mathbf{T}^{-1} \times \mathbf{R}^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
- \mathbf{x} to the right
- y up
- -z into the screen
, Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Projection

- Goal:

Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
, Orthographic Projection (=Parallel Projection)
- Perspective Projection

Orthographic Projection

- Can be done by ignoring z-coordinate
- Use camera space xy coordinates as image coordinates
- Project points to $\mathbf{x}-\mathbf{y}$ plane along parallel lines

- Often used in graphical illustrations, architecture, 3D modeling

Perspective Projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)

- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

Pinhole Camera

- San Diego, May 20th 2012

Perspective Projection

- Project along rays that converge in center of projection

Perspective Projection

Earliest example:

Video

- Professor Ravi Ramamoorthi on Perspective Projection - http://www.youtube.com/watch?v=VpNJbvZhNCQ

