CSE 167: Introduction to Computer Graphics Lecture #3: Projection

Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

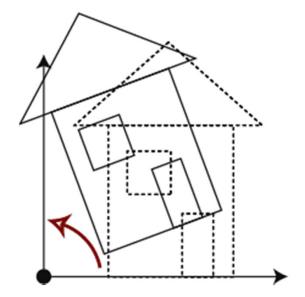
Announcements

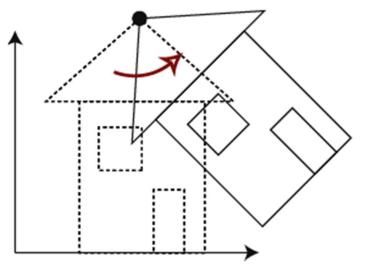
- Project I due Friday, 10/17
- Discussion section on Mondays is now in a new location at a different time:
 - Building CSB (Cognitive Science Building), room 001
 - 5:00-5:50pm
- We <u>will</u> have a discussion this coming Monday
- Piazza to replace Ted discussion board
- TA office hours (Dylan) in lab today: 5-7pm
- Independent study positions available (CSE 199):
 - Raspberry Pi scripting with Python
 - Android app with web backend

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

How to rotate around a Pivot Point?



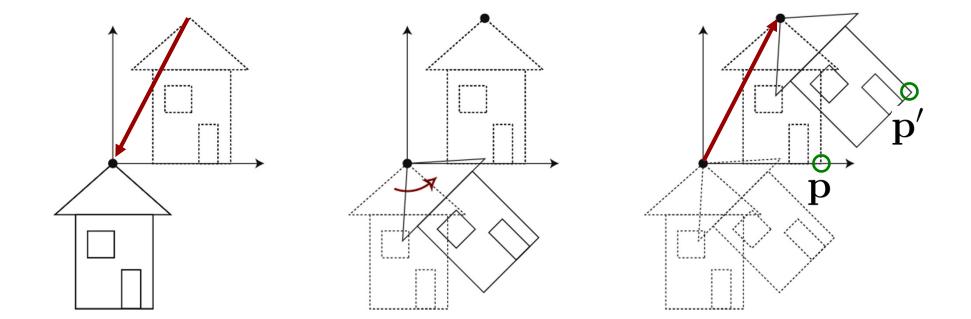


Rotation around origin: p' = R p

Rotation around pivot point: p' = ?

4

Rotating point p around a pivot point



1. Translation T 2. Rotation R 3. Translation T⁻¹

 $p' = T^{-1} R T p$

5

Concatenating transformations

• Given a sequence of transformations $\mathbf{M}_3\mathbf{M}_2\mathbf{M}_1$

 $\mathbf{p}' = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{p}$ $\mathbf{M}_{total} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$

 $\mathbf{p}' = \mathbf{M}_{total}\mathbf{p}$

Note: associativity applies:

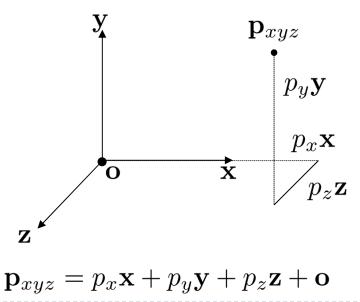
$$\mathbf{M}_{total} = (\mathbf{M}_3 \mathbf{M}_2) \mathbf{M}_1 = \mathbf{M}_3 (\mathbf{M}_2 \mathbf{M}_1)$$

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Coordinate System

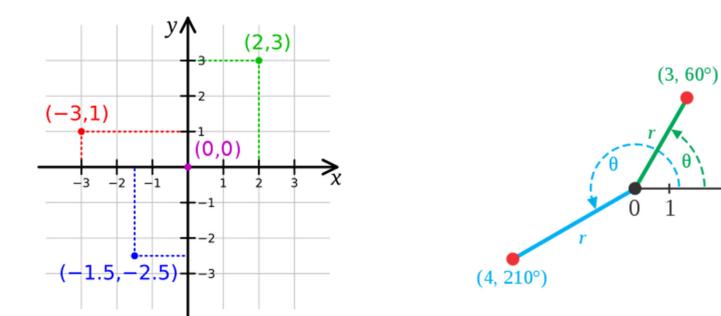
- Given point **p** in homogeneous coordinates: $\begin{vmatrix} p_x \\ p_y \\ p_z \end{vmatrix}$
- Coordinates describe the point's 3D position in a coordinate system with basis vectors x, y, z and origin o:



Rectangular and Polar Coordinates

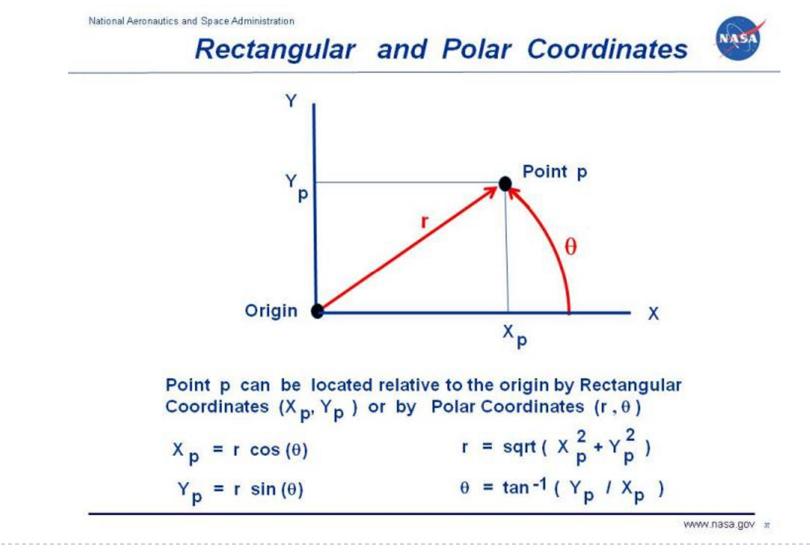
Rectangular Coordinates

T,



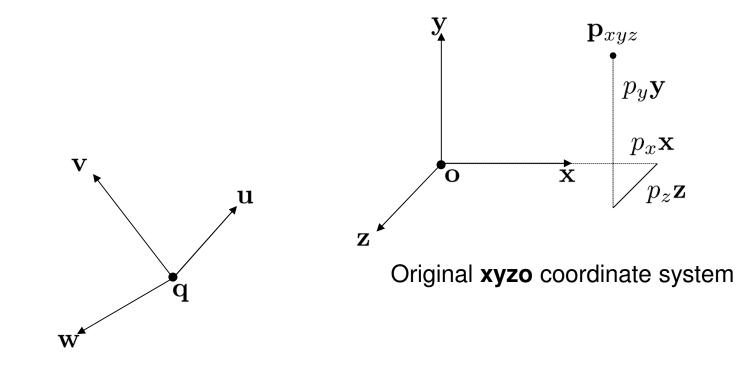
Images: Wikipedia

Rectangular and Polar Coordinates



10

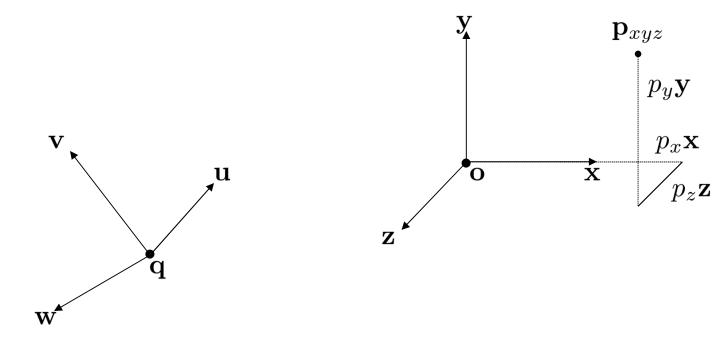
Coordinate Transformation



New **uvwq** coordinate system

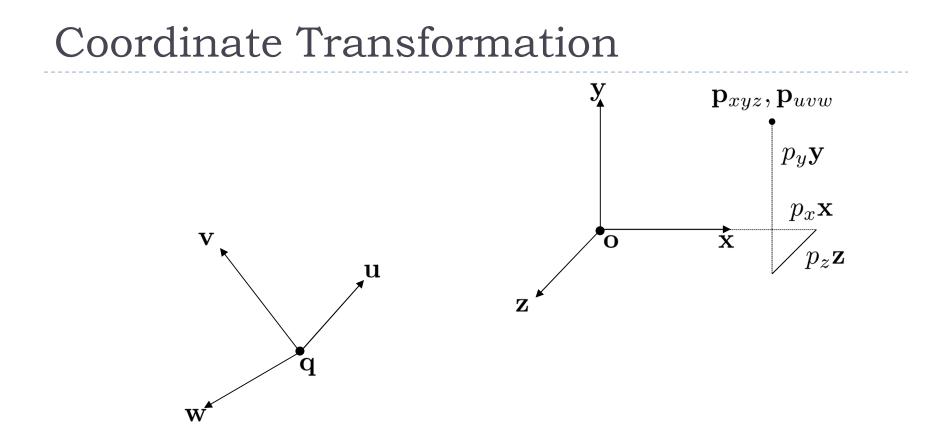
Goal: Find coordinates of \mathbf{p}_{xyz} in new **uvwq** coordinate system

Coordinate Transformation



Express coordinates of xyzo reference frame with respect to uvwq reference frame:

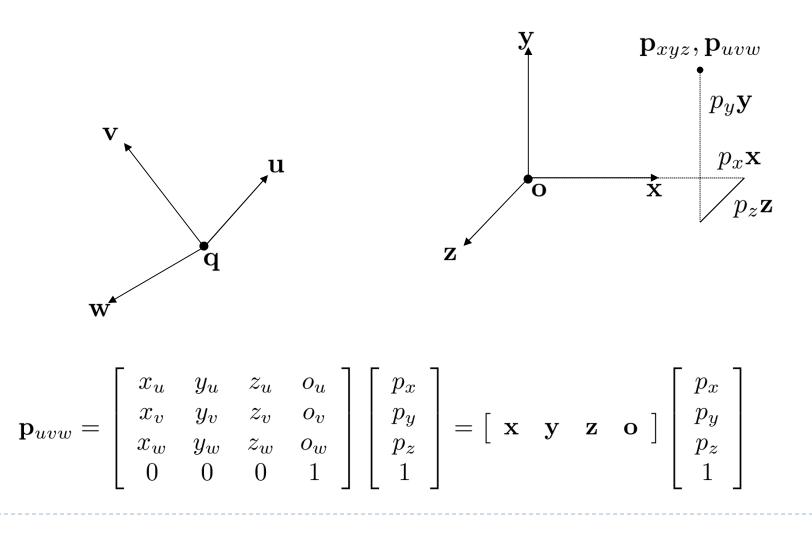
$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix} \mathbf{z}$$



Point **p** expressed in new **uvwq** reference frame:

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix} - \dots$$
13

Coordinate Transformation



14

Coordinate Transformation

Inverse transformation

- ► Given point **P**_{uvw} w.r.t. reference frame **uvwq**:
 - Coordinates P_{xyz} w.r.t. reference frame xyzo are calculated as:

$$\mathbf{p}_{xyz} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} p_u \\ p_v \\ p_w \\ 1 \end{bmatrix}$$

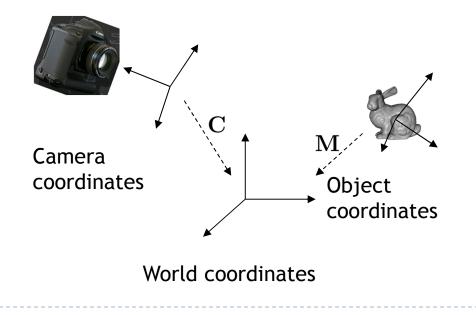
Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Typical Coordinate Systems

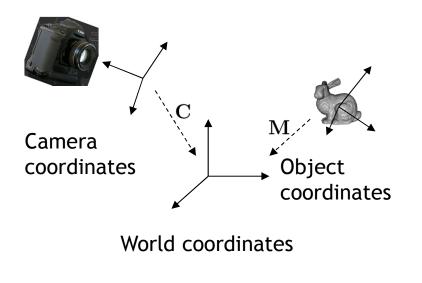
- In computer graphics, we typically use at least three coordinate systems:
 - World coordinate system
 - Camera coordinate system
 - Object coordinate system

D



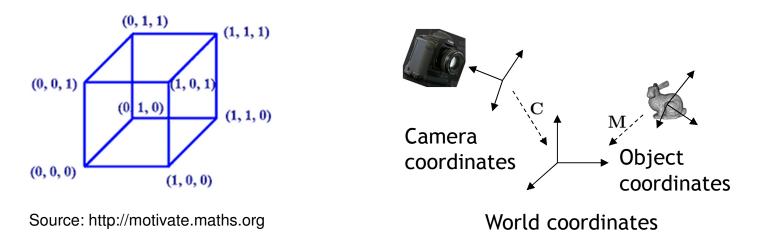
World Coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate system orientation
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - Otherwise, x/y is often screen plane, z points out of the screen



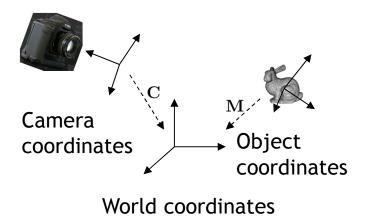
Object Coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is in geometric center, on the base, or in a corner of the object
 - > Depends on how object is generated or used.



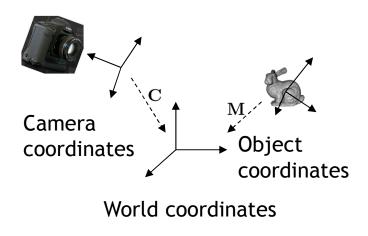
Object Transformation

- The transformation from object to world coordinates is different for each object.
- Defines placement of object in scene.
- ▶ Given by "model matrix" (model-to-world transformation) **M**.



Camera Coordinate System

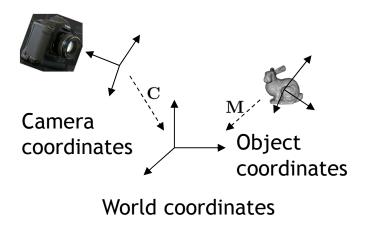
- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane



Camera Coordinate System

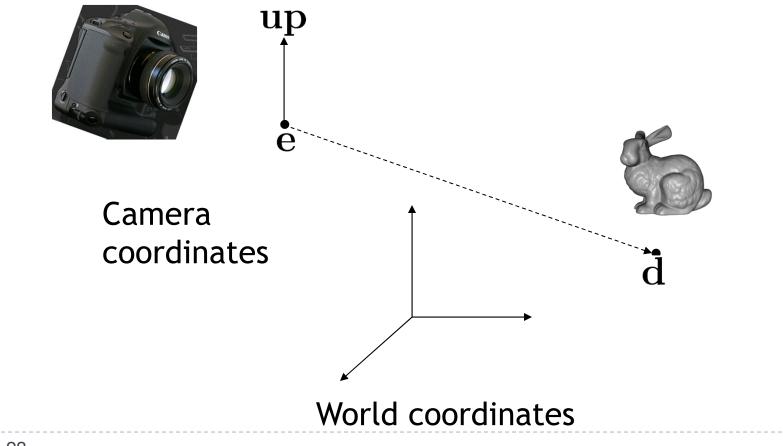
The Camera Matrix defines the transformation from camera to world coordinates

Placement of camera in world



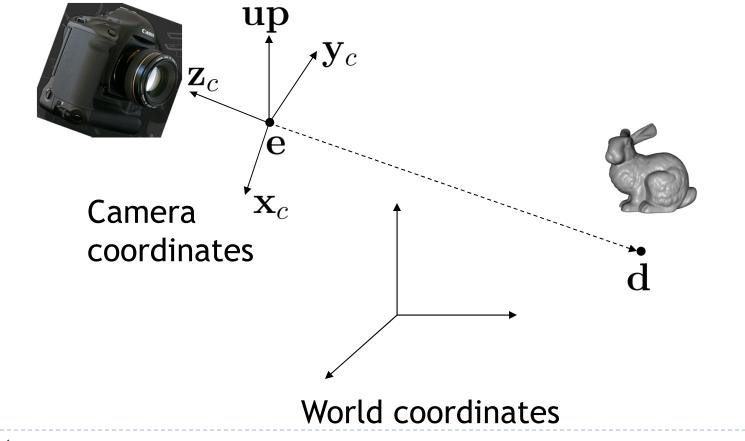
Camera Matrix

Construct from center of projection e, look at d, upvector up:



Camera Matrix

Construct from center of projection e, look at d, upvector up (up in camera coordinate system):



Camera Matrix

z-axis

$$\boldsymbol{z}_C = \frac{\boldsymbol{e} - \boldsymbol{d}}{\|\boldsymbol{e} - \boldsymbol{d}\|}$$

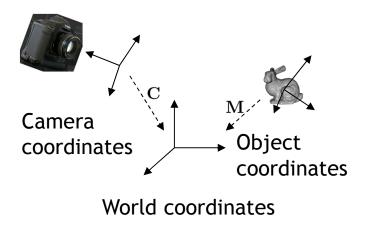
• x-axis
$$x_C = \frac{up \times z_C}{\|up \times z_C\|}$$

• y-axis
$$y_c = z_c \times x_c = \frac{up}{\|up\|}$$

$$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{x}_C & \boldsymbol{y}_C & \boldsymbol{z}_C & \boldsymbol{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transforming Object to Camera Coordinates

- Object to world coordinates: M
- Camera to world coordinates: C
- Point to transform: p
- Resulting transformation equation: p' = C⁻¹ M p



Tips for Notation

Indicate coordinate systems with every point or matrix

- Point: p_{object}
- ► Matrix: M_{object}→world

Resulting transformation equation:

 $\mathbf{p}_{camera} = (\mathbf{C}_{camera \rightarrow world})^{-1} \mathbf{M}_{object \rightarrow world} \mathbf{p}_{object}$

- Helpful hint: in source code use consistent names
 - Point: p_object or p_obj or p_o
 - Matrix: object2world or obj2wld or o2w
- Resulting transformation equation:

wld2cam = inverse(cam2wld);

p_cam = p_obj * obj2wld * wld2cam;

Inverse of Camera Matrix

- ▶ How to calculate the inverse of the camera matrix C⁻¹?
- Generic matrix inversion is complex and computeintensive
- Affine transformation matrices can be inverted more easily
- Observation:
 - Camera matrix consists of translation and rotation: ${\bf T} \times {\bf R}$
- Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{\top}$
- Inverse of translation: T(t)⁻¹ = T(-t)
- Inverse of camera matrix: $C^{-1} = T^{-1} \times R^{-1}$

Objects in Camera Coordinates

• We have things lined up the way we like them on screen

- **x** to the right
- **y** up
- -z into the screen
- Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene to 2D plane

Lecture Overview

- Concatenating Transformations
- Coordinate Transformation
- Typical Coordinate Systems
- Projection

Projection

Goal:

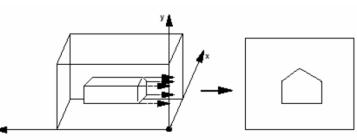
Given 3D points (vertices) in camera coordinates, determine corresponding image coordinates

- Transforming 3D points into 2D is called Projection
- OpenGL supports two types of projection:
 - Orthographic Projection (=Parallel Projection)
 - Perspective Projection

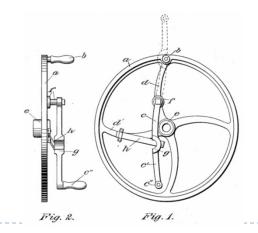
Orthographic Projection

Can be done by ignoring z-coordinate

- Use camera space xy coordinates as image coordinates
- Project points to x-y plane along parallel lines

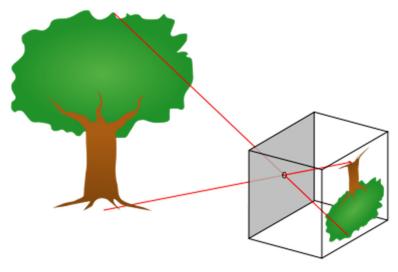


Often used in graphical illustrations, architecture, 3D modeling



Perspective Projection

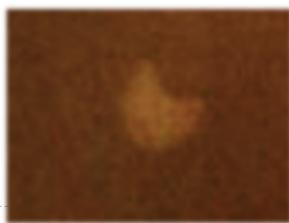
- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)



- Things farther away appear to be smaller
- Discovery attributed to Filippo Brunelleschi (Italian architect) in the early 1400's

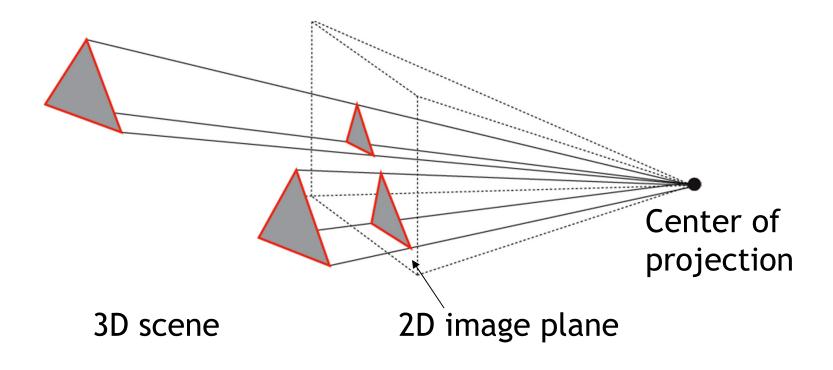
Pinhole Camera

San Diego, May 20th, 2012



Perspective Projection

Project along rays that converge in center of projection



Perspective Projection

Parallel lines are no longer parallel, converge in one point

Earliest example: La Trinitá (1427) by Masaccio

Video

Professor Ravi Ramamoorthi on Perspective Projection

http://www.youtube.com/watch?v=VpNJbvZhNCQ